分析 (1)利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法即可得出.
解答 解:(1)a1≠0,2an-a1=S1•Sn(n∈N*),∴$2{a}_{1}-{a}_{1}={a}_{1}^{2}$,解得a1=1,
∴Sn=2an-1,
n≥2時(shí),an=Sn-Sn-1=2an-1-(2an-1-1),化為:an=2an-1.
∴數(shù)列{an}是等比數(shù)列,公比為2,首項(xiàng)為1.
∴an=2n-1(n∈N*).
(2)bn=$\frac{1}{(lo{g}_{2}{a}_{n+1})•(lo{g}_{2}{a}_{n+2})}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴{bn}前n項(xiàng)和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式、對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)≥0 | |
B. | f(1)>f(14) | |
C. | y=f(x)的解析式可能為y=2cos2$\frac{π}{6}$x | |
D. | 若x2+y2=9與y=f(x)有且僅有三個(gè)交點(diǎn),則在[0,3]上將y=f(x)的圖象沿y軸旋轉(zhuǎn)一周得到的幾何體的體積為9π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {a|-$\sqrt{2}$≤a<-1} | B. | {a|-$\sqrt{2}$<a≤-1} | C. | {a|-$\sqrt{2}$<a<-1} | D. | {a|-$\sqrt{2}$≤a≤-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {an}的前n項(xiàng)和中S3最大 | B. | {an}是遞增數(shù)列 | ||
C. | {an}中存在值為0的項(xiàng) | D. | S4<S5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n+(n+1)+(n+2)+…+(2n-1)=n2 | B. | n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2 | ||
C. | n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 | D. | n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com