【題目】已知橢圓E: (a﹥b﹥0)的一個焦點(diǎn)與短軸的兩個端點(diǎn)是正三角形的三個頂點(diǎn),點(diǎn)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過原點(diǎn)O且斜率為的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
【答案】(Ⅰ);(Ⅱ)詳見解析.
【解析】試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),考查學(xué)生的分析問題、解決問題的能力和數(shù)形結(jié)合的思想.第(Ⅰ)問,利用點(diǎn)在橢圓上,列出方程,解出b的值,從而得到橢圓E的方程;第(Ⅱ)問,利用橢圓的幾何性質(zhì),數(shù)形結(jié)合,根據(jù)根與系數(shù)的關(guān)系進(jìn)行求解.
試題解析:(Ⅰ)由已知,a=2b.
又橢圓過點(diǎn),故,解得.
所以橢圓E的方程是.
(Ⅱ)設(shè)直線l的方程為, ,
由方程組得,①
方程①的判別式為,由,即,解得.
由①得.
所以M點(diǎn)坐標(biāo)為,直線OM方程為,
由方程組得.
所以.
又
.
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 的焦點(diǎn)為,過拋物線上的動點(diǎn)(除頂點(diǎn)外)作的切線交軸于點(diǎn).過點(diǎn)作直線的垂線(垂足為)與直線交于點(diǎn).
(Ⅰ)求焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:;
(Ⅲ)求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為.
(Ⅰ)若數(shù)列的前項(xiàng)和,求, 的值;
(Ⅱ)若, ,且.
(i)求的值;
(ii)對于數(shù)列和,滿足關(guān)系式, 為常數(shù),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點(diǎn)P(1,0)作直線AB分別交OA、OB于A、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是由個實(shí)數(shù)組成的行列的數(shù)表,滿足:每個數(shù)的絕對值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對于,記為的第行各數(shù)之和(剟 ),為的第列各數(shù)之和(剟),記為, , , , , , , 中的最小值.
()對如下數(shù)表,求的值.
()設(shè)數(shù)表形如:
求的最大值.
()給定正整數(shù),對于所有的,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·鄭州第二次質(zhì)量預(yù)測)如圖,高為1的等腰梯形ABCD中,AM=CD=AB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB,AC.
(1)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?
(2)當(dāng)點(diǎn)P為AB邊的中點(diǎn)時,求點(diǎn)B到平面MPC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com