已知集合A={x|a-2≤x≤a+1},B={x|2<x<4},能使A?B成立的實數(shù)a的取值范圍是( )
A.{a|3<a<4}
B.{a|3≤a<4}
C.{a|3<a≤4}
D.{a|3≤a≤4}
【答案】分析:首先分析集合A,B,然后通過兩個集合之間的關系A?B確定端點的關系.最后解一元一次不等式組即可得到a的取值范圍.
解答:解:∵集合A={x|a-2≤x≤a+1},B={x|2<x<4}
且A?B

解得:{a|3≤a≤4}
故答案為:D
點評:本題考查集合之間的關系,以及參數(shù)取值問題,通過集合關系寫出表達式,然后求解.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|
x+2x-3
<0}

(1)在區(qū)間(-4,4)上任取一個實數(shù)x,求“x∈A∩B”的概率;
(2)設(a,b)為有序實數(shù)對,其中a是從集合A中任取的一個整數(shù),b是從集合B中任取的一個整數(shù),求“b-a∈A∪B”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x>2,集合B={x|x>3},以下命題正確的個數(shù)是(  )
①?x0∈A,x0∉B                 ②?x0∈B,x0∉A ③?x∈A都有x∈B               ④?x∈B都有x∈A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x||1-
x-13
|>2,x∈R}
,集合B={x|x2-2x+1-m2>0,m<0,x∈R},全集I=R,若“x∈A”是“x∈B”充分非必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•海淀區(qū)一模)已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},則能使A?B成立的實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2+3x-4<0},B={x|
x+2x-4
<0
}.
(1)在區(qū)間(-4,5)上任取一個實數(shù)x,求“x∈A∩B”的概率;
(2)設(a,b)為有序實數(shù)對,其中a,b分別是集合A,B中任取的一個整數(shù),求“a-b∈A∪B”的概率.

查看答案和解析>>

同步練習冊答案