A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{1}{2}$ | D. | 2 |
分析 利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)已知可得$\frac{cosA}{sinA}+\frac{cosB}{sinB}=\frac{cosC}{sinC}$,由正弦定理與余弦定理得$\frac{^{2}+{c}^{2}-{a}^{2}}{2bca}$+$\frac{{a}^{2}+{c}^{2}-^{2}}{2acb}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2abc}$,解得$\frac{{a}^{2}+^{2}}{{c}^{2}}$=3,由正弦定理即可得解.
解答 解:在斜三角形ABC中,由題設(shè)知:$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=1,可得:$\frac{1}{tanA}+\frac{1}{tanB}=\frac{1}{tanC}$,
∴$\frac{cosA}{sinA}+\frac{cosB}{sinB}=\frac{cosC}{sinC}$,
∴由正弦定理與余弦定理得$\frac{^{2}+{c}^{2}-{a}^{2}}{2bca}$+$\frac{{a}^{2}+{c}^{2}-^{2}}{2acb}$=$\frac{{a}^{2}+^{2}-{c}^{2}}{2abc}$,
∴整理解得:$\frac{{a}^{2}+^{2}}{{c}^{2}}$=3,
∴由正弦定理可得:$\frac{sin^2A+sin^2B}{sin^2C}$=3.
故選:B.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4f(-2)<f(-1) | B. | 4f(4)<f(2) | C. | 4f(2)>-f(-1) | D. | 3f($\sqrt{3}$)>4f(2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com