15.在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且$\frac{tanC}{tanB}=-\frac{c}{2a+c}$.
(I)求B;
(II)若b=2$\sqrt{3}$,a+c=4,求△ABC的面積.

分析 (Ⅰ)根據(jù)正弦定理和三角函數(shù)的化簡(jiǎn)可得cosB=-$\frac{1}{2}$,即可求出答案,
(Ⅱ)由余弦定理可得ac的值,再根據(jù)三角形的面積公式即可求出

解答 解:(Ⅰ)在△ABC中,由正弦定理以及且$\frac{tanC}{tanB}=-\frac{c}{2a+c}$得:
$\frac{tanC}{tanB}$=-$\frac{sinC}{2sinA+sinC}$,
∴$\frac{sinCcosB}{cosCsinB}$=-$\frac{sinC}{2sinA+sinC}$,
∵C為△ABC的內(nèi)角,
∴sinC≠0,
∴$\frac{cosB}{cosCsinB}$=-$\frac{1}{2sinA+sinC}$,
∴2sinAcosB+sinCcosB=-cosCsinB,
∴2sinAcosB=-(cosCsinB+sinCcosB)=-sin(B+C)
∵A+B+C=π,
∴sin(B+C)=sinA,
∴2sinAcosB=-sinA,
∵sinA≠0,
∴cosB=-$\frac{1}{2}$,
∵B為三角形的內(nèi)角,
∴B=$\frac{2π}{3}$;
(Ⅱ)由余弦定理b2=a2+c2-2accosB得b2=(a+c)2-2ac-2accosB,
將b=2$\sqrt{3}$,a+c=4,B=$\frac{2}{3}$π代入上式可得12=16-2ac(1-$\frac{1}{2}$),
∴ac=4,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了正弦定理和余弦定理和三角形的面積公式以及三角函數(shù)的化簡(jiǎn)和求值,考查了學(xué)生的運(yùn)算能力,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)P在曲線y=$\frac{4}{{{e^x}+1}}$上,θ為曲線在點(diǎn)P處的切線的傾斜角,則θ的取值范圍是( 。
A.[0,$\frac{π}{4}$)B.$[\frac{π}{4},\frac{π}{2})$C.$[\frac{3π}{4},π)$D.$(\frac{π}{2},\frac{3π}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知遞增數(shù)列{an}滿足a1+a2+a3+…+an=$\frac{1}{2}$(an2+n),數(shù)列{bn}滿足bn+1+(-1)nbn=an.記數(shù)列{bn}的前n項(xiàng)和為Sn,則S12=42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二項(xiàng)式${(2x-\frac{1}{x})^5}$展開式中,第四項(xiàng)的系數(shù)為( 。
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)拋物線x2=2y的焦點(diǎn)為F,經(jīng)過點(diǎn)P(1,3)的直線l與拋物線相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),則$|\overrightarrow{AF}|+|\overrightarrow{BF}|$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow$,則m=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的是( 。
A.經(jīng)過三點(diǎn)有且只有一個(gè)平面
B.經(jīng)過兩條直線有且只有一個(gè)平面
C.經(jīng)過平面外一點(diǎn)有且只有一個(gè)平面與已知平面垂直
D.經(jīng)過平面外一點(diǎn)有且只有一條直線與已知平面垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若一直線的參數(shù)方程為$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),則此直線的傾斜角為( 。
A.60°B.120°C.300°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\frac{ai}{2-i}=1-2i$,則a=( 。
A.5B.-5C.5iD.-5i

查看答案和解析>>

同步練習(xí)冊(cè)答案