分析 由已知求出sin(α+β)、sin(α-β)的值,再由拆角配角思想結(jié)合兩角和與差的余弦求解.
解答 解:∵cos(α+β)=$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),∴sin(α+β)=-$\frac{3}{5}$.
∵cos(α-β)=-$\frac{4}{5}$,α-β∈($\frac{3π}{4}$,π),∴sin(α-β)=$\frac{3}{5}$.
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=$\frac{4}{5}×(-\frac{4}{5})-(-\frac{3}{5})×\frac{3}{5}$=$-\frac{7}{25}$;
cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=$\frac{4}{5}×(-\frac{4}{5})+(-\frac{3}{5})×\frac{3}{5}=-1$.
點評 本題考查三角函數(shù)的化簡求值,考查兩角和與差的余弦,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+y2-2x+4y=0 | B. | x2+y2-2x+2y=0 | C. | x2+y2-2x-4y=0 | D. | x2+y2-2x-2y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $±2\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 99 | C. | 198 | D. | 297 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 27 | B. | 37 | C. | 64 | D. | 81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | (¬p)∧q | C. | (¬p)∧(¬q) | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com