(本小題滿分14分)已知數(shù)列{an}中,(t>0且t≠1).若是函數(shù)的一個極值點.

(Ⅰ)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;

(Ⅱ)記,當t=2時,數(shù)列的前n項和為Sn,求使Sn>2008的n的最小值;

(Ⅲ)當t=2時,求證:對于任意的正整數(shù)n,有 。

 

【答案】

解:分析:利用是函數(shù)的一個極值點求出的關系式,從而加以證明第(1)問,而第(2)問的解決關鍵在于運用等比數(shù)列的求和公式,再利用函數(shù)的單調(diào)性得出n的最小值。第(3)問中先將拆項并求和,通過觀察與分析得出指數(shù)函數(shù)g(x)的表達式。

(Ⅰ).由題意,即

,∴,

,∴數(shù)列是以為首項,t為公比的等比數(shù)列,

以上各式兩邊分別相加得,∴,

時,上式也成立,∴

   (Ⅱ)當t=2時,

,得,,

因此n的最小值為1005.

(Ⅲ)∵

  

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案