5.已知x1是函數(shù)f(x)=log${\;}_{\frac{1}{2}}$x-($\frac{1}{2}$)x的零點(diǎn),x2是函數(shù)g(x)=log2x-($\frac{1}{2}$)x的零點(diǎn),則x1x2的取值范圍是(0,1).

分析 根據(jù)函數(shù)零點(diǎn)的性質(zhì),確定兩個零點(diǎn)的取值范圍,結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,即可得到結(jié)論.

解答 解:∵x1是函數(shù)f(x)=log${\;}_{\frac{1}{2}}$x-($\frac{1}{2}$)x的零點(diǎn),x2是函數(shù)g(x)=log2x-($\frac{1}{2}$)x的零點(diǎn),
∴l(xiāng)og${\;}_{\frac{1}{2}}$x1=$(\frac{1}{2})^{{x}_{1}}$,和log2x2=($\frac{1}{2}$)${\;}^{{x}_{2}}$,
則由圖象可知,0<x1<1,x2>1,∴x1<x2,
則兩式相減得$(\frac{1}{2})^{{x}_{1}}$-($\frac{1}{2}$)${\;}^{{x}_{2}}$=log2x1-$log_{\frac{1}{2}}}$x2=log2x1+log2x2=log2x1x2<0
即0<x1x2<1,
故答案為:(0,1).

點(diǎn)評 本題主要考查函數(shù)零點(diǎn)的應(yīng)用,利用數(shù)形結(jié)合,以及指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\frac{3}{a}+\frac{2}$=2(a>0,b>0),則ab的最小值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2sinx,cosx),$\overrightarrow$=($\sqrt{3}$cosx,2cosx),定義函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)試說明函數(shù)y=f(x)可由函數(shù)y=sin2x的圖象經(jīng)過怎樣的變換得到?
(4)若函數(shù)f(x)的圖象關(guān)于x=x0對稱,且0<x0<$\frac{π}{2}$,求x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若關(guān)于x的方程f(x)=a|x-1|恰有兩個不同的實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若sin(3π-α)=$\sqrt{2}$sin(2π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),且0<α<β<π,則sinα•sinβ=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)是奇函數(shù),且x>0時,f(x)=-x${\;}^{\frac{1}{2}}$,則當(dāng)x<0時,f(x)的解析式是( 。
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=(-x)${\;}^{\frac{1}{2}}$C.f(x)=-(-x)${\;}^{\frac{1}{2}}$D.f(x)=-x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.要得到y(tǒng)=2sin(2x+$\frac{2π}{3}$)的圖象,需要將函數(shù)y=2sin(2x-$\frac{2π}{3}$)的圖象( 。
A.向左平移$\frac{2π}{3}$個單位B.向右平移$\frac{2π}{3}$個單位
C.向左平移$\frac{π}{3}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)y=f(x)+cosx在[-$\frac{π}{4},\frac{3π}{4}$]上單調(diào)遞減,則f(x)可以是( 。
A.1B.-sinxC.cosxD.sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在一次試驗(yàn)中,測得(x,y)的四組值分別是A(1,1.5),B(2,3),C(3,4),D(4,5.5),則y
與x之間的回歸直線方程為( 。
A.$\hat y=x+1$B.$\hat y=x+2$C.$\hat y=2x+1$D.$\hat y=x-1$

查看答案和解析>>

同步練習(xí)冊答案