(Ⅰ)解:當(dāng)
時,
,令f′(x)=
-e
x=0,x=-ln2
當(dāng)x<-ln2時,f′(x)>0;當(dāng)x>-ln2時,f′(x)<0,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-ln2),遞減區(qū)間為(-ln2,+∞).
(Ⅱ)證明:令F(x)=x-f(x)=e
x-(a-1)x,
(1)當(dāng)a=1時,F(xiàn)(x)=e
x>0,∴f(x)≤x成立;
(2)當(dāng)1<a≤1+e時,F(xiàn)′(x)=e
x-(a-1)=e
x-e
ln(a-1),
當(dāng)x<ln(a-1)時,F(xiàn)′(x)<0;當(dāng)x>ln(a-1)時,F(xiàn)′(x)>0,
∴F(x)在(-∞,ln(a-1))上遞減,在(ln(a-1),+∞)上遞增,
∴F(x)≥F(ln(a-1))=e
ln(a-1)-(a-1)ln(a-1)=(a-1)[1-ln(a-1)],
∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,
∴F(x)≥0,即f(x)≤x成立.
綜上,當(dāng)1≤a≤1+e時,有f(x)≤x.
分析:(Ⅰ)當(dāng)a=
時,求出f′(x),解不等式f′(x)>0,f′(x)<0即得函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)構(gòu)造函數(shù)F(x)=x-f(x)=e
x-(a-1)x,利用導(dǎo)數(shù)證明F(x)≥0即可.
點評:本題考查導(dǎo)數(shù)與函數(shù)的單調(diào)性問題,導(dǎo)數(shù)的符號決定函數(shù)的單調(diào)性.