函數(shù)y=2-x2+x+2的單調(diào)遞增區(qū)間為
 
分析:先求-x2+x+2的單調(diào)增區(qū)間,根據(jù)指數(shù)函數(shù)y=2x的單調(diào)性,求出函數(shù)y=2-x2+x+2的單調(diào)遞增區(qū)間.
解答:解:由于-x2+x+2的單調(diào)增區(qū)間是:(-∞,
1
2
],
由于指數(shù)函數(shù)y=2x是增函數(shù),由復(fù)合函數(shù)的單調(diào)性可知,
函數(shù)y=2-x2+x+2的單調(diào)遞增區(qū)間:(-∞,
1
2
],
故答案為:(-∞,
1
2
],
點評:本題考查指數(shù)函數(shù)的單調(diào)性與特殊點,考查邏輯思維能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2-x
2+x
的定義域為(  )
A、{x|-2<x<2}
B、{x|-2<x≤2}
C、{x|x<-2或x>2}
D、{x|x<-2或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域為M,
(1)求M;
(2)當x∈M時,求函數(shù)f(x)=log2x•log2(x2)+a•log2x的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域為M,
(1)求M;
(2)當x∈M時,求函數(shù)f(x)=2lo
g
2
2
x+4log2x 
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2-x
2+x
+lg(-x2+4x-3)
的定義域為M.
(1)求M;
(2)當x∈M時,求函數(shù)f(x)=a•2x+2+3•4x(a<-3)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2-x2+x-1的單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案