【題目】已知圓心C(1,2),且經(jīng)過點(diǎn)(0,1) (Ⅰ)寫出圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(2,﹣1)作圓C的切線,求切線的方程及切線的長.
【答案】解(Ⅰ)∵圓心C(1,2),且經(jīng)過點(diǎn)(0,1) 圓C的半徑 ,
∴圓C的標(biāo)準(zhǔn)方程:(x﹣1)2+(y﹣2)2=2,
(Ⅱ)設(shè)過點(diǎn)P(2,﹣1)的切線方程為y+1=k(x﹣2),
即kx﹣y﹣2k﹣1=0,有: ,
∴k2﹣6k﹣7=0,解得k=7或k=﹣1,
∴所求切線的方程為7x﹣y﹣15=0或x+y﹣1=0,
由圓的性質(zhì)可知:
【解析】(Ⅰ)求出圓的半徑,即可寫出圓C的標(biāo)準(zhǔn)方程;(Ⅱ)利用點(diǎn)斜式設(shè)出過點(diǎn)P(2,﹣1)作圓C的切線方程,通過圓心到切線的距離等于半徑,求出切線的斜率,然后求出方程,通過切線的長、半徑以及圓心與P點(diǎn)的距離滿足勾股定理,求出切線長.
【考點(diǎn)精析】關(guān)于本題考查的圓的標(biāo)準(zhǔn)方程,需要了解圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校對高三學(xué)生一次模擬考試的數(shù)學(xué)成績進(jìn)行分析,隨機(jī)抽取了部分學(xué)生的成績,得到如圖所示的成績頻率分布直方圖.
(1)根據(jù)頻率分布直方圖估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績的眾數(shù)、中位數(shù)和平均值;
(2)若成績不低于80分為優(yōu)秀成績,視頻率為概率,從全校學(xué)生中有放回的任選3名學(xué)生,用變量ξ表示3名學(xué)生中獲得優(yōu)秀成績的人數(shù),求變量ξ的分布列及數(shù)學(xué)期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的方程(x﹣1)2+y2=1,P是橢圓 =1上一點(diǎn),過P作圓的兩條切線,切點(diǎn)為A,B,則 的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(1,2),B(﹣1,2),動點(diǎn)P滿足 ,若雙曲線 =1(a>0,b>0)的漸近線與動點(diǎn)P的軌跡沒有公共點(diǎn),則雙曲線離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣ x+c(a,c∈R)滿足條件:①f(1)=0;②對一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)﹣mx在區(qū)間[m,m+2]上有最小值﹣5,求出實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(1)求第一次試驗(yàn)恰摸到一個紅球和一個白球概率;
(2)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com