13.(x2+$\frac{1}{x}$)8的展開(kāi)式中含x4項(xiàng)的系數(shù)為70.(用數(shù)字作答)

分析 寫(xiě)出二項(xiàng)展開(kāi)式的通項(xiàng),由x的指數(shù)等于4求得r值,則答案可求.

解答 解:由${T}_{r+1}={C}_{8}^{r}({x}^{2})^{8-r}(\frac{1}{x})^{r}={C}_{8}^{r}{x}^{16-3r}$,
令16-3r=0,得r=4.
∴展開(kāi)式中含x4項(xiàng)的系數(shù)為${C}_{8}^{4}=70$.
故答案為:70.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開(kāi)式的通項(xiàng),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.一個(gè)透明的球形裝飾品內(nèi)放置了兩個(gè)公共底面的圓錐如圖,且這兩個(gè)圓錐的頂點(diǎn)和底面圓周都在這個(gè)球面上,如圖,已知圓錐底面面積是這個(gè)球面面積的$\frac{3}{16}$,則較大圓錐與較小圓錐的體積之比為3:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BF⊥BC,BF<CE,BF=2,AB=1,AD=$\sqrt{5}$.
(1)求證:BC⊥AF;
(2)求證:AF∥平面DCE;
(3)若二面角E-BC-A的大小為120°,求直線DF與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,R為△ABC外接圓的半徑,若a=1,$\frac{3}{2}$sin2B+$\frac{7}{2}$sin2C-sin2A=sinAsinBsinC,則R的值為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知關(guān)于x的方程x2+2alog2(x2+2)+a2-2=0有唯一解,則實(shí)數(shù)a的值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知sin(α+$\frac{π}{5}$)=$\frac{\sqrt{3}}{3}$,則cos(2α+$\frac{2π}{5}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將g(x)=cos(2x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后得到函數(shù)f(x)=sin(2x+φ)(|φ|<π)的圖象,則φ的值為( 。
A.-$\frac{2π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x}$,a∈R.
(Ⅰ)當(dāng)a=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的極小值;
(Ⅱ)討論函數(shù)g(x)=f′(x)-$\frac{x}{3}$零點(diǎn)的個(gè)數(shù);
(Ⅲ)若對(duì)任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列的前項(xiàng)和為Sn,且{${\frac{S_n}{n}}$}是等差數(shù)列,已知a1=3,$\frac{S_2}{2}$+$\frac{S_3}{3$+$\frac{S_4}{4}$=15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令 cn=$\left\{{\begin{array}{l}{\frac{2}{S_n}(n為奇數(shù))}\\{{2^{{a_{\frac{n}{2}}}}}(n為偶數(shù))}\end{array}}$,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案