14.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,時速在[60,70)內(nèi)的汽車輛數(shù)大約是( 。
A.8B.80C.65D.70

分析 由頻率分布直方圖先求出時速在[60,70)內(nèi)的汽車輛數(shù)所占頻率,由此能求出時速在[60,70)內(nèi)的汽車輛數(shù).

解答 解:由頻率分布直方圖的性質(zhì)得:
時速在[60,70)內(nèi)的汽車輛數(shù)所占頻率為0.04×10=0.4,
∴時速在[60,70)內(nèi)的汽車輛數(shù)大約為:0.4×200=80.
故選:B.

點(diǎn)評 本題考查頻數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意頻率分布直方圖的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋2顆骰子,則向上點(diǎn)數(shù)不同的概率為( 。
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=a•ex+blnx+c,且$f'(1)=e,f'(-1)=\frac{1}{e}$.
(1)求實(shí)數(shù)a,b的值.
(2)將(1)得到的a,b值代入f(x),得到函數(shù)g(x),若點(diǎn)A(0,d)在g(x)圖象上,且g(x)在A點(diǎn)處的切線過點(diǎn)B(1,4),求c,d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|$\frac{1}{x}$≤1},集合B={x|$\sqrt{x-1}$<1},則( 。
A.A?BB.A?BC.A∩B=AD.A∩B={x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,若a=b=$\sqrt{3}$,∠C=$\frac{5π}{6}$,則c=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\sqrt{a{x}^{2}+bx+c}$(a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個正方形區(qū)域,則a的值為( 。
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}{e^x},x<0\\-{x^2}+4x+3,x≥0\end{array}\right.$,若方程f(x)-k=0有兩個零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.[3,7)∪{-4e-2,0}B.[3,7)∪{-4e-2}C.[4e-2,7)D.[0,7]∪{-4e-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過原點(diǎn)作直線與圓(x-1)2+y2=1相交于A,B兩點(diǎn),若所得劣弧長為$\frac{π}{3}$,則直線AB的方程為( 。
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(3-a)x-4,x≤6}\\{{a}^{x-6},x>6}\end{array}\right.$,設(shè)an=f(n),n∈N*,若{an}是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是(2,3).

查看答案和解析>>

同步練習(xí)冊答案