1.在等差數(shù)列{an}中,a1=2,S3=9.
(1)求{an}的通項(xiàng)公式an
(2)求{2${\;}^{{a}_{n}}$}的前n項(xiàng)和Sn

分析 (1)利用等差數(shù)列的通項(xiàng)公式及其求和公式即可得出.
(2)利用等比數(shù)列的求和公式即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵a1=2,S3=9.∴3×2+$\frac{3×2}{2}$d=9,解得d=1.
∴an=a1+(n-1)d=n+1.
(2)由(1)知${2^{a_n}}={2^{n+1}}$,
∴$\left\{{{2^{a_n}}}\right\}$是以4為首項(xiàng),2為公比的等比數(shù)列,
∴${S_n}=\frac{{4(1-{2^n})}}{1-2}=4•{2^n}-4={2^{n+2}}-4$.

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|x2-2x-3<0},N={x|x<1},則M∩∁RN等于(  )
A.[-1,1]B.(-1,0)C.[1,3)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)若a=1,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f(x)+$\frac{a}{x}$,求函數(shù)y=g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某班n名學(xué)生的綜合素質(zhì)測評成績(百分制)頻率分布直方圖如圖所示,已知70~80分?jǐn)?shù)段的學(xué)生人數(shù)為27人,90~95分?jǐn)?shù)段的學(xué)生中女生為2人.
(1)求a,n的值;(2)若從90~95分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)抽取2人,求其中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=(sinx+cosx)cosx,則f(x)的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在正方形網(wǎng)格中的位置圖所示.
(1)求作向量$\overrightarrow{m}$,$\overrightarrow{n}$,其中$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$-$\overrightarrow{c}$;
(2)求向量$\overrightarrow{m}$,$\overrightarrow{n}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2ex-b,其中b∈R.
(Ⅰ)證明:對于任意x1,x2∈(-∞,0],都有f(x1)-f(x2)≤$\frac{4}{{e}^{2}}$;
(Ⅱ)討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù)(結(jié)論不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在銳角△ABC中,a,b,c分別為角A,B,C所對的邊,且$\sqrt{3}$c=2asinC,
(1)求角A;
(2)若a=2,且△ABC的面積等于$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x3+ax2+(a+6)x+1在R上存在極值,則實(shí)數(shù)a的取值范圍( 。
A.-3≤a≤6B.a≥6或a≤-3C.-3<a<6D.a>6或a<-3

查看答案和解析>>

同步練習(xí)冊答案