【題目】如圖,已知圖形ABCDEF,內(nèi)部連有線(xiàn)段.

1)由點(diǎn)A沿著圖中的線(xiàn)段到達(dá)點(diǎn)E的最近路線(xiàn)有多少條?

2)由點(diǎn)A沿著圖中的線(xiàn)段到達(dá)點(diǎn)C的最近路線(xiàn)有多少條?

3)求出圖中總計(jì)有多少個(gè)矩形?

【答案】1;(2;(3.

【解析】

1)由題意轉(zhuǎn)化條件為點(diǎn)A需向右移動(dòng)3次、向上移動(dòng)3次,結(jié)合組合的知識(shí)即可得解;

2)設(shè)出直線(xiàn)上其它格點(diǎn)為、,按照、、、分類(lèi),結(jié)合分步乘法、組合的知識(shí)即可得解;

3)由題意轉(zhuǎn)化條件為從豎線(xiàn)中選出兩條、橫線(xiàn)中選出兩條組成圖形,按照矩形的邊在不在上分類(lèi),利用分步乘法、組合的知識(shí)即可得解.

1)由題意點(diǎn)A沿著圖中的線(xiàn)段到達(dá)點(diǎn)E的最近路線(xiàn)需要移動(dòng)6次:向右移動(dòng)3次,向上移動(dòng)3次,故點(diǎn)A到達(dá)點(diǎn)E的最近路線(xiàn)的條數(shù)為;

2)設(shè)點(diǎn)、、的位置如圖所示:

則點(diǎn)A沿著圖中的線(xiàn)段到達(dá)點(diǎn)C的最近路線(xiàn)可分為4種情況:

①沿著,共有條最近路線(xiàn);

②沿著,共有條最近路線(xiàn);

③沿著,共有條最近路線(xiàn);

④沿著,共有條最近路線(xiàn);

故由點(diǎn)A沿著圖中的線(xiàn)段到達(dá)點(diǎn)C的最近路線(xiàn)有條;

3)由題意,要組成矩形則應(yīng)從豎線(xiàn)中選出兩條、橫線(xiàn)中選出兩條,可分為兩種情況:

①矩形的邊不在上,共有個(gè)矩形;

②矩形的一條邊在上,共有個(gè)矩形;

故圖中共有個(gè)矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為6,漸近線(xiàn)方程為動(dòng)點(diǎn)在雙曲線(xiàn)左支上,點(diǎn)為圓上一點(diǎn)的最小值為

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求a;

(2)證明:存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱(chēng)為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出.具體操作是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線(xiàn),將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形,如上圖.現(xiàn)在圖(3)中隨機(jī)選取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下邊的折線(xiàn)圖給出的是甲、乙兩只股票在某年中每月的收盤(pán)價(jià)格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動(dòng)程度,給出下列結(jié)論:①股票甲在這一年中波動(dòng)相對(duì)較小,表現(xiàn)的更加穩(wěn)定;②購(gòu)買(mǎi)股票乙風(fēng)險(xiǎn)高但可能獲得高回報(bào);③股票甲的走勢(shì)相對(duì)平穩(wěn),股票乙的股價(jià)波動(dòng)較大;④兩只般票在全年都處于上升趨勢(shì).其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓離心率為,以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓O與直線(xiàn)相切.

1)求橢圓C的方程;

2)設(shè)不過(guò)原點(diǎn)O的直線(xiàn)與該橢圓交于P、Q兩點(diǎn),滿(mǎn)足直線(xiàn)OPPQ,OQ的斜率依次成等比數(shù)列,求OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn)

(1)求橢圓的方程,并求其離心率;

(2)過(guò)點(diǎn)軸的垂線(xiàn),設(shè)點(diǎn)為第四象限內(nèi)一點(diǎn)且在橢圓上(點(diǎn)不在直線(xiàn)上),點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)為,直線(xiàn)交于另一點(diǎn).設(shè)為原點(diǎn),判斷直線(xiàn)與直線(xiàn)的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】沙漏是我國(guó)古代的一種計(jì)時(shí)工具,是用兩個(gè)完全相同的圓錐頂對(duì)頂疊放在一起組成的(如圖).在一個(gè)圓錐中裝滿(mǎn)沙子,放在上方,沙子就從頂點(diǎn)處漏到另一個(gè)圓錐中,假定沙子漏下來(lái)的速度是恒定的.已知一個(gè)沙漏中沙子全部從一個(gè)圓錐中漏到另一個(gè)圓錐中需用時(shí)10分鐘.那么經(jīng)過(guò)5分鐘后,沙漏上方圓錐中的沙子的高度與下方圓錐中的沙子的高度之比是(假定沙堆的底面是水平的)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,菱形所在的平面,中點(diǎn),上的點(diǎn).

1)求證:平面平面;

2)若的中點(diǎn),當(dāng)時(shí),是否存在點(diǎn),使直線(xiàn)與平面的所成角的正弦值為?若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案