設(shè)數(shù)列,若以為系數(shù)的二次方程:都有根滿足.
(1)求證:為等比數(shù)列
(2)求.
(3)求的前項和.

(1)證明過程詳見解析;(2);(3).

解析試題分析:本題考查等差數(shù)列等比數(shù)列的通項公式、前n項和公式、數(shù)列求和等基礎(chǔ)知識,考查運算能力和推理論證能力.第一問,利用根與系數(shù)關(guān)系,得到兩根之和、兩根之積,代入到中,得到的關(guān)系式,再用配湊法,湊出一個新的等比數(shù)列;第二問,利用第一問的結(jié)論,先求出新數(shù)列的通項公式,再求;第三問,用分組求和的方法,分別是等比數(shù)列和等差數(shù)列,直接用前n項和公式求和即可.
試題解析:(1)∵都有根滿足,
,
,



,而
是以為首項,以為公比的等比數(shù)列.
(2)∵,∴.
(3)



.
考點:1.根與系數(shù)的關(guān)系;2.配湊法求通項公式;3.分組求和;4.等差等比數(shù)列的前n項和公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知為等差數(shù)列,,其前n項和為,若,
(1)求數(shù)列的通項;(2)求的最小值,并求出相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點在函數(shù)的圖象上,其中為正整數(shù).
(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前項積為,即,求
(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列的前項和,并求使的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)遞增等差數(shù)列的前n項和為,已知,的等比中項.
(l)求數(shù)列的通項公式;
(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式及其前項和;
(Ⅱ)若數(shù)列滿足求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)為數(shù)列的前項和,對任意的,都有為正常數(shù)).
(1)求證:數(shù)列是等比數(shù)列;
(2)數(shù)列滿足,,求數(shù)列的通項公式;
(3)在滿足(2)的條件下,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,).
(1)求的值;
(2)是否存在常數(shù),使得數(shù)列是一個等差數(shù)列?若存在,求的值及的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,的等差中項().
(Ⅰ)證明數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)是否存在正整數(shù),使不等式)恒成立,若存在,求出的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,,若數(shù)列滿足.
(Ⅰ)證明:數(shù)列是等差數(shù)列,并寫出的通項公式;
(Ⅱ)求數(shù)列的通項公式及數(shù)列中的最大項與最小項.

查看答案和解析>>

同步練習冊答案