已知數(shù)列的前項(xiàng)和為,的等差中項(xiàng)().
(Ⅰ)證明數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)是否存在正整數(shù),使不等式)恒成立,若存在,求出的最大值;若不存在,請(qǐng)說明理由.

(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在符合要求的正整數(shù),且其最大值為11.

解析試題分析:(Ⅰ)的等差中項(xiàng),可得到,(),證明數(shù)列為等比數(shù)列;只需證明為一個(gè)與無(wú)關(guān)的常數(shù)即可,這很容易證出;(Ⅱ)求數(shù)列的通項(xiàng)公式,由(Ⅰ)可得,即,這樣問題轉(zhuǎn)化為已知,利用時(shí),,當(dāng)時(shí),,可求出數(shù)列的通項(xiàng)公式,值得注意的是,用此法求出的需驗(yàn)證時(shí),是否符合,若不符合,須寫成分段形式;(Ⅲ)是否存在正整數(shù),使不等式)恒成立,若存在,求出的最大值;若不存在,請(qǐng)說明理由,這是一個(gè)探索性命題,解此類題往往先假設(shè)其成立,作為條件若能求出的范圍,就存在正整數(shù),使不等式)恒成立,若求不出的范圍,就不存在正整數(shù),使不等式)恒成立,此題為奇數(shù)時(shí),對(duì)任意正整數(shù)不等式恒成立;只需討論當(dāng)為偶數(shù)時(shí),可解得,,所以存在符合要求的正整數(shù),且其最大值為11.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e5/1/twjap3.png" style="vertical-align:middle;" />是的等差中項(xiàng),所以),即,(),由此得),又,所以 ),所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.
(Ⅱ)由(Ⅰ)得,即), 所以,當(dāng)時(shí),,又時(shí),也適合上式, 所以
(Ⅲ) 原問題等價(jià)于)恒成立.當(dāng)為奇數(shù)時(shí),對(duì)任意正整數(shù)不等式恒成立;當(dāng)為偶數(shù)時(shí),等價(jià)于恒成立,令,,則等價(jià)于恒成立, 因?yàn)?img s

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中滿足,.
(1)求和公差;
(2)求數(shù)列的前10項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列,若以為系數(shù)的二次方程:都有根滿足.
(1)求證:為等比數(shù)列
(2)求.
(3)求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是公比為的等比數(shù)列,且成等差數(shù)列.
⑴求q的值;
⑵設(shè)是以2為首項(xiàng),為公差的等差數(shù)列,其前項(xiàng)和為,當(dāng)n≥2時(shí),比較 與的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于任意的不超過數(shù)列的項(xiàng)數(shù)),若數(shù)列的前項(xiàng)和等于該數(shù)列的前項(xiàng)之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項(xiàng)型數(shù)列,求的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明對(duì)恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

公差不為零的等差數(shù)列{}中,,又成等比數(shù)列.
(I) 求數(shù)列{}的通項(xiàng)公式.
(II)設(shè),求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若正數(shù)項(xiàng)數(shù)列的前項(xiàng)和為,首項(xiàng),點(diǎn)在曲線上.
(1)求;
(2)求數(shù)列的通項(xiàng)公式
(3)設(shè),表示數(shù)列的前項(xiàng)和,若恒成立,求及實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,n≥2時(shí),求通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案