A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 以B為原點(diǎn),BA為x軸,BC為y軸,過(guò)B作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B-AP-C的大。
解答 解:∵在四面體P-ABC中,PA、AB、BC兩兩垂直,且AB=$\sqrt{6}$,BC=$\sqrt{2}$,
∴以B為原點(diǎn),BA為x軸,BC為y軸,過(guò)B作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,
A($\sqrt{6}$,0,0),P($\sqrt{6}$,0,t),C(0,$\sqrt{2}$,0),
$\overrightarrow{PA}$=(0,0,-t),$\overrightarrow{PC}$=(-$\sqrt{6}$,$\sqrt{2}$,-t),
設(shè)平面PAC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=-tz=0}\\{\overrightarrow{n}•\overrightarrow{PC}=-\sqrt{6}x+\sqrt{2}y-tz=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,0),
平面PAB的法向量$\overrightarrow{m}$=(0,1,0),
設(shè)二面角B-AP-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{2}$,
∴θ=30°.
∴二面角B-AP-C的大小為30°.
故選:A.
點(diǎn)評(píng) 本題考查二面角的大小的求法,是中檔題,解題時(shí)認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
價(jià)格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com