【題目】若四面體的六條棱長分別為2,3,4,5, 6,7,則不同的形狀有______種(若兩個四面體經(jīng)適當放置后可完全重合,則認為是相同的形狀).
【答案】10.
【解析】
將長為k的棱記為.考慮.
(1) 共面,則該面的另一邊必為.
(i)若按順時針方向組成三角形(均指從形內(nèi)向該面看三邊的繞向,下同),則邊不能取 (否則,將使的三邊為2,5,7,矛盾)
若取,,有2種情況;
若取,,也有2種情況. 共得4種情況.
(ii)若按逆時針方向組成三角形,類似也得4種情況.
(2)異面,設(shè),.則其余四條邊,每一條皆與相鄰,于是所在面的另一條邊必為.
(i)若按順時 針方向組成三角形,不妨設(shè),,剩 下兩條邊,不能取,故只有, ,得1 種情況.
(ii)若按逆時針方向組成三角形,類似也得1種情況. 因此,本題中不同的形狀有10種.故答案為:10
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有限數(shù)列,定義集合為數(shù)列的伴隨集合.
(Ⅰ)已知有限數(shù)列和數(shù)列.分別寫出和的伴隨集合;
(Ⅱ)已知有限等比數(shù)列,求的伴隨集合中各元素之和;
(Ⅲ)已知有限等差數(shù)列,判斷是否能同時屬于的伴隨集合,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)統(tǒng)計,某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對應數(shù)據(jù)的散點圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點圖可以看出,可用線性回歸模型擬合與的關(guān)系,請計算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預測液體肥料每畝使用量為千克時,西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,回歸方程中斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形為一張臺球桌面,,.從點擊出一個球,其可無限次經(jīng)臺球桌四邊反彈運行.已知該球經(jīng)過矩形的中心.
(1)試求所有整點 的個數(shù),使得該球可以經(jīng)過點;
(2)若該球在上述、兩點間的最短路徑長為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年3月21日是世界睡眠日,良好的睡眠狀況是保持身體健康的重要基礎(chǔ).為了做好今年的世界睡眠日宣傳工作,某社區(qū)從本轄區(qū)內(nèi)同一年齡層次的人員中抽取了100人,通過問詢的方式得到他們在一周內(nèi)的睡眠時間(單位:小時),并繪制出如右的頻率分布直方圖:
(Ⅰ)求這100人睡眠時間的平均數(shù)(同一組數(shù)據(jù)用該組區(qū)間的中點值代替,結(jié)果精確到個位);
(Ⅱ)由直方圖可以認為,人的睡眠時間近似服從正態(tài)分布,其中近似地等于樣本平均數(shù),近似地等于樣本方差,.假設(shè)該轄區(qū)內(nèi)這一年齡層次共有10000人,試估計該人群中一周睡眠時間位于區(qū)間(39.2,50.8)的人數(shù).
附:.若隨機變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓 ()的左、右焦點分別為,過的直線交橢圓于,兩點,若橢圓的離心率為,的周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點,,設(shè)弦,的中點分別為,證明:三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.
(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大;
(Ⅲ)在(Ⅱ)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com