A. | 6種 | B. | 24種 | C. | 30種 | D. | 36種 |
分析 先從4個中任選2個看作整體,然后做3個元素的全排列,從中排除數(shù)學(xué)、理綜安排在同一節(jié)的情形,可得結(jié)論.
解答 解:由于每科一節(jié)課,每節(jié)至少有一科,必有兩科在同一節(jié),先從4科中任選2科看作一個整體,然后做3個元素的全排列,共$C_4^2A_3^3$種方法,再從中排除數(shù)學(xué)、理綜安排在同一節(jié)的情形,共$A_3^3$種方法,故總的方法種數(shù)為$C_4^2A_3^3$-$A_3^3$=36-6=30.
故選:C.
點(diǎn)評 本題考查排列組合及簡單的計數(shù)問題,采用間接法是解決問題的關(guān)鍵,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{π}{45}$ | D. | $\frac{45-π}{45}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${({x-\frac{1}{3}})^2}+{({y-\frac{{2\sqrt{3}}}{3}})^2}=\frac{16}{3}$ | B. | ${({x-\frac{1}{3}})^2}+{({y-\frac{{\sqrt{3}}}{3}})^2}=\frac{16}{3}$ | ||
C. | ${({x-3})^2}+{({y-2\sqrt{3}})^2}=16$ | D. | ${({x-3})^2}+{({y-\sqrt{3}})^2}=16$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或2 | B. | $\sqrt{2}$或2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com