【題目】如圖所示,已知直線,圓的圓心為,且經(jīng)過點(diǎn).
(1)求圓的方程;
(2)若圓與圓關(guān)于直線對稱,點(diǎn)分別為圓,上任意一點(diǎn),求的最小值.
【答案】(1);(2).
【解析】
(1)根據(jù)圓的圓心坐標(biāo)和圓所經(jīng)過的點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式求出圓的半徑,進(jìn)而利用圓的標(biāo)準(zhǔn)方程公式寫出圓的方程;
(2)將圓的圓心坐標(biāo)橫縱坐標(biāo)交換,即得圓的圓心坐標(biāo),根據(jù)對稱性不改變圓的半徑,即得圓的半徑,利用圓心距大于半徑之和,判定兩圓相離,進(jìn)而根據(jù)圓的性質(zhì)得到最小值.
(1)∵圓的圓心為,且經(jīng)過點(diǎn),
∴圓的半徑,
∴圓的方程為:;
(2)若圓與圓關(guān)于直線對稱,則圓的圓心為(0,3),半徑為,
圓心距為,
∴兩圓相離,
點(diǎn)分別為圓,上任意一點(diǎn),則的最小值為.
如圖所示,在分別與重合時取到最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量X服從正態(tài)分布N(100,100),則下列選項正確的是( )
(參考數(shù)值:隨機(jī)變量ξ服從正態(tài)分布,則P(μ﹣σ<ξ<μ+σ)=0.6826),P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974)
A.E(X)=100B.D(X)=100
C.P(X≥90)=0.8413D.P(X≤120)=0.9987
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:3x﹣y﹣1=0,l2:x+2y﹣5=0,l3:x﹣ay﹣3=0不能圍成三角形,則實數(shù)a的取值可能為( )
A.1B.C.﹣2D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),當(dāng)時,若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(平均數(shù)、方差)考慮,你認(rèn)為選派哪位同學(xué)參加合適?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | |||
女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進(jìn)計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進(jìn)計件單價為1.2元;超出件的部分,累進(jìn)計件單價為1.3元;超出400件以上的部分,累進(jìn)計件單價為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個零點(diǎn)
C.存在正實數(shù),使得成立
D.對任意兩個正實數(shù),,且,若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知直線l過點(diǎn)P(2,2).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐標(biāo)方程;
(2)若l與C交于A,B兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯誤的是
A. 若命題為真命題, 命題為假命題, 則命題“”為真命題
B. 命題“若,則或”為真命題
C. 對于命題,,則,
D. “”是“”的充分不必要條件個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com