【題目】2018年元旦期間,某運(yùn)動服裝專賣店舉辦了一次有獎促銷活動,消費(fèi)每超過400元均可參加1次抽獎活動,抽獎方案有兩種,顧客只能選擇其中的一種.

方案一:顧客轉(zhuǎn)動十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖),轉(zhuǎn)盤停止轉(zhuǎn)動時(shí)指針指向哪個扇形區(qū)域,則顧客可直接獲得該區(qū)域?qū)?yīng)面額(單位:元)的現(xiàn)金優(yōu)惠,且允許顧客轉(zhuǎn)動3次.

方案二:顧客轉(zhuǎn)動十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(如圖〕,轉(zhuǎn)盤停止轉(zhuǎn)動時(shí)指針若指向陰影部分,則未中獎,若指向白色區(qū)域,則顧客可直接獲得40元現(xiàn)金,且允許顧客轉(zhuǎn)動3次.

(1)若兩位顧客均獲得1次抽獎機(jī)會,且都選擇抽獎方案一,試求這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;

(2)若某顧客恰好獲得1次抽獎機(jī)會.

①試分別計(jì)算他選擇兩種抽獎方案最終獲得現(xiàn)金獎勵的數(shù)學(xué)期望;

②從概率的角度比較①中該顧客選擇哪一種抽獎方案更合算?

【答案】(1) (2) ①見解析②該顧客選擇第一種抽獎方案更合算

【解析】試題分析:(1)由圖可知,每一次轉(zhuǎn)盤指向60元對應(yīng)區(qū)域的概率為,設(shè)“每位顧客獲得180元現(xiàn)金獎勵”為事件,則結(jié)合乘法概率公式得到這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;

(2)①方案一 可能的取值為60,100,140,180, 方案二 ,故;

由①知,所以該顧客選擇第一種抽獎方案更合算.

試題解析:

(1)選擇方案一,若要享受到180元的現(xiàn)金優(yōu)惠,則必須每次旋轉(zhuǎn)轉(zhuǎn)盤都指向60元對應(yīng)的區(qū)域, 由圖可知,每一次轉(zhuǎn)盤指向60元對應(yīng)區(qū)域的概率為.

設(shè)“每位顧客獲得180元現(xiàn)金獎勵”為事件

,

所以兩位顧客均獲得180元現(xiàn)金獎勵的概率為.

(2)①若選擇抽獎方案一,則每一次轉(zhuǎn)盤指向60元對應(yīng)區(qū)域的概率為,每一次轉(zhuǎn)盤指向20元對應(yīng)區(qū)域的概率為.

設(shè)獲得現(xiàn)金獎勵金額為元,

可能的取值為60,100,140,180.

;

.

所以選擇抽獎方案一,該顧客獲得現(xiàn)金獎勵金額的數(shù)學(xué)期望為(元).

若選擇抽獎方案二,設(shè)三次轉(zhuǎn)動轉(zhuǎn)盤的過程中,指針指向白色區(qū)域的次數(shù)為,最終獲得現(xiàn)金獎勵金額為元,則,故

所以選擇抽獎方案二,該顧客獲得現(xiàn)金獎勵金額的數(shù)學(xué)期望為(元).

②由①知,

所以該顧客選擇第一種抽獎方案更合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)求函數(shù)圖像在處的切線方程;

2)證明:

3)若不等式對于任意的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn)

)求橢圓的方程;

)是否存在過點(diǎn)的直線相交于不同的兩點(diǎn),滿足?

若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對任意nN*總有2Snan2+n,且anan+1.若對任意nN*,θR,不等式λn+2)恒成立,求實(shí)數(shù)λ的最小值( )

A.1B.2C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知都是各項(xiàng)不為零的數(shù)列,且滿足,其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.

1)若數(shù)列的通項(xiàng)公式分別為,求數(shù)列的通項(xiàng)公式;

2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;

3)若為常數(shù),),,),對任意,,求出數(shù)列的最大項(xiàng)(用含式子表達(dá)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,過點(diǎn)

)求函數(shù)的單調(diào)遞減區(qū)間和極大值點(diǎn);

)求實(shí)數(shù)的值;

)若恰有兩個零點(diǎn),請直接寫出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且時(shí)有極大值.

(Ⅰ)求的解析式;

(Ⅱ)若的導(dǎo)函數(shù),不等式為正整數(shù))對任意正實(shí)數(shù)恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2018·滄州質(zhì)檢]對于橢圓,有如下性質(zhì):若點(diǎn)是橢圓上的點(diǎn),則橢圓在該點(diǎn)處的切線方程為.利用此結(jié)論解答下列問題.點(diǎn)是橢圓上的點(diǎn),并且橢圓在點(diǎn)處的切線斜率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若動點(diǎn)在直線上,經(jīng)過點(diǎn)的直線,與橢圓相切,切點(diǎn)分別為.求證:直線必經(jīng)過一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案