4.執(zhí)行如圖所示的程序框圖,若輸入x=6的值為6,則輸出的x值為0.

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,循環(huán)可得結論.

解答 解:模擬程序的運行,可得
x=6
執(zhí)行循環(huán)體,y=4,x=4
不滿足條件x≤1,執(zhí)行循環(huán)體,y=2,x=2
不滿足條件x≤1,執(zhí)行循環(huán)體,y=0,x=0
滿足條件x≤1,退出循環(huán),輸出x的值為0.
故答案為:0.

點評 本題給出程序框圖,要我們求出最后輸出值,著重考查了算法語句的理解和循環(huán)結構等知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=3+3cosθ\\ y=3sinθ\end{array}$,(θ為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程是ρ=$\sqrt{3}$sinθ+cosθ,曲線C3的極坐標方程是θ=$\frac{π}{3}$.
(Ⅰ)求曲線C1的極坐標方程;
(Ⅱ)曲線C3與曲線C1交于點O,A,曲線C3與曲線C2曲線交于點O,B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.球面上有A,B,C三點,球心O到平面ABC的距離是球半徑的$\frac{1}{3}$,且AB=2$\sqrt{2}$,AC⊥BC,則球O的表面積是( 。
A.81πB.C.$\frac{81π}{4}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某中學高一、高二年級各有8個班,學校調查了春學期各班的文學名著閱讀量(單位:本),并根據(jù)調查結果,得到如下所示的莖葉圖:

為鼓勵學生閱讀,在高一、高二兩個兩個年級中,學校將閱讀量高于本年級閱讀量平均數(shù)的班級命名為該年級的“書香班級”.
(1)當a=4時,記高一年級“書香班級”數(shù)為m,高二年級的“書香班級”數(shù)為n,比較m,n的大小關系;
(2)在高一年級8個班級中,任意選取兩個,求這兩個班級均是“書香班級”的概率;
(3)若高二年級的“書香班級”數(shù)多于高一年級的“書香班級”數(shù),求a的值(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點P是線段BD1上的動點.當△PAC在平面DC1,BC1,AC上的正投影都為三角形時,將它們的面積分別記為S1,S2,S3
(i) 當BP=$\frac{{\sqrt{3}}}{3}$時,S1=S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示的幾何體中,四邊形ABCD為等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四邊形CDEF為正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若點G是棱AB的中點,求證:EG∥平面BDF;
(Ⅱ)求直線AE與平面BDF所成角的正弦值;
(Ⅲ)在線段FC上是否存在點H,使平面BDF⊥平面HAD?若存在,求$\frac{FH}{HC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{(x-1)^2}+2,\;\;\;x≤1\\ \frac{1}{x}+1,\;\;x>1\;.\;\;\end{array}\right.$下列四個命題:
①f(f(1))>f(3);
②?x0∈(1,+∞),$f'({x_0})=-\frac{1}{3}$;
③f(x)的極大值點為x=1;
④?x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1
其中正確的有①②③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知曲線C的方程為$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,則曲線C的離心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知F1,F(xiàn)2是橢圓C1與雙曲線C2的公共焦點,點P是C1與C2的公共點,若橢圓C1的離心率e1=$\frac{\sqrt{3}}{2}$,∠F1PF2=$\frac{π}{2}$,則雙曲線C2的離心率e2的值為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案