13.Sn表示數(shù)列{an}(n≥1)的前n項(xiàng)和,已知a1=1,且?n≥1,Sn+1=4an+2,則a2013等于(  )
A.3019•22012B.3019•22013C.3018•22012D.以上答案均不對(duì)

分析 Sn+1=4an+2,a1=1,可得a2=5,Sn=4an-1+2,可得:an+1-2an=2(an-2an-1),利用等比數(shù)列的通項(xiàng)公式可得:an-2an-1=3×2n-2,(n≥2).
變形為$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{4}$,再利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵Sn+1=4an+2,a1=1,
∴a2=5,Sn=4an-1+2,
可得:an+1=4an-4an-1,
變形為:an+1-2an=2(an-2an-1),
∴數(shù)列{an-2an-1}是等比數(shù)列,首項(xiàng)為3,公比為2.
∴an-2an-1=3×2n-2,(n≥2).
∴$\frac{{a}_{n}}{{2}^{n}}$-$\frac{{a}_{n-1}}{{2}^{n-1}}$=$\frac{3}{4}$,
∴數(shù)列$\{\frac{{a}_{n}}{{2}^{n}}\}$是等差數(shù)列,首項(xiàng)為$\frac{1}{2}$,公差為$\frac{3}{4}$.
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{1}{2}+\frac{3}{4}(n-1)$=$\frac{3n-1}{4}$,
∴an=(3n-1)×2n-2
∴a2013=3019×22012
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列與等比數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知圓C:(x-1)2+(y-2)2=2截y軸所得線段與截直線y=2x+b所得線段的長(zhǎng)度相等,則b=( 。
A.$-\sqrt{6}$B.±$\sqrt{6}$C.$-\sqrt{5}$D.±$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在下圖平行四邊形?OABC中,兩對(duì)角線OB與AC相交于點(diǎn)D,若$\overrightarrow{OA}$=(3,1),$\overrightarrow{OC}$=(1,3),則向量$\overrightarrow{OD}$的坐標(biāo)是(2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=$\frac{x}{ax+b}$(a≠0),f(2)=1,又方程f(x)=x有唯一解,則a+b=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.過點(diǎn)A(-3,4)的直線l與兩坐標(biāo)軸圍成的三角形的面積為3,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某地昆蟲種群數(shù)量在七月份1~13日的變化如圖所示,且滿足y=Asin(ωx+φ)(ω>0,φ<0).
(1)根據(jù)圖中數(shù)據(jù)求函數(shù)解析式;
(2)從7月1日開始,每隔多長(zhǎng)時(shí)間種群數(shù)量就出現(xiàn)一個(gè)低谷或一個(gè)高峰?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若等比數(shù)列{an}的公比為q,n為偶數(shù),則數(shù)列的第$\frac{n}{2}$項(xiàng)為( 。
A.a1q${\;}^{\frac{n}{2}}$B.a1q${\;}^{\frac{n-2}{2}}$C.a1q${\;}^{\frac{n-1}{2}}$D.a1q${\;}^{\frac{n}{2}+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若($\frac{1}{3}$)${\;}^{{x}^{2}-3}$>9-x,則x的取值范圍為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=x+lnx的零點(diǎn)為x0,若x0∈(k,k+1)(k∈Z),則k=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案