20.已知向量$\overrightarrow{a}$=(sin2α-$\frac{2\sqrt{5}}{3}$,2cosα),$\overrightarrow$=(1,1-sinα),α∈(0,π),且$\overrightarrow{a}$$⊥\overrightarrow$,則tan($α-\frac{π}{4}$)=( 。
A.9-4$\sqrt{5}$B.4$\sqrt{5}$-9C.5$\sqrt{2}$-9D.9+4$\sqrt{5}$

分析 由條件利用兩個(gè)向量垂直的性質(zhì)求得cosα 的值,可得sinα、tanα的值,再利用兩角差的正切公式求得tan($α-\frac{π}{4}$)的值.

解答 解:由$\overrightarrow{a}$$⊥\overrightarrow$,α∈(0,π),可得$\overrightarrow{a}•\overrightarrow$=sin2α-$\frac{2\sqrt{5}}{3}$+2cosα(1-sinα)=2cosα-$\frac{2\sqrt{5}}{3}$=0,
∴cosα=$\frac{\sqrt{5}}{3}$,∴sinα=$\frac{2}{3}$,∴tanα=$\frac{sinα}{cosα}$=$\frac{2}{\sqrt{5}}$,
∴tan($α-\frac{π}{4}$)=$\frac{tanα-1}{1+tanα}$=4$\sqrt{5}$-9,
故選:B.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量垂直的性質(zhì),兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在三棱錐P-ABC中,PA=PB=AB=BC=2,∠CBA=∠PBC=60°,Q為線段BC的中點(diǎn).
(1)求證:PA⊥BC;
(2)求點(diǎn)Q到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若有點(diǎn)M1(4,3)和M2(2,-1),點(diǎn)M分有向線段$\overrightarrow{{{M}_{1}M}_{2}}$的比λ=-2.則點(diǎn)M的坐標(biāo)(0,-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)滿足下列條件,分別求f(x)的解析式.
(1)已知f($\sqrt{x}$-1)=x-2$\sqrt{x}$,求f(x);
(2)已知f(x)為二次函數(shù),f(0)=0,f(x+1)=f(x)+x+1,求f(x);
(3)已知f(x)滿足f(x)+2f(-x)=$\frac{1}{1+x}$,求f(x);
(4)已知f(x)為偶函數(shù),且對(duì)于任意實(shí)數(shù)x,y,都有f(x+y)=f(x)+f(y)+xy,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知眨tanα,tanβ是方程x2+3$\sqrt{3}$x+4=0的兩根,且-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$$<β<\frac{π}{2}$,進(jìn)一步準(zhǔn)確判斷α,β所在象限并求角α+β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.n∈N*,A${\;}_{n}^{3}$+A${\;}_{4}^{n+1}$的值為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.解不等式|x-2|+|x-3|≥5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若${∫}_{1}^{2}$(x-a)dx=${∫}_{0}^{\frac{π}{4}}$cos2xdx,則a等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)向量$\overrightarrow{a}$=(2,5),$\overrightarrow$=(0,1),則$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)等于( 。
A.31B.32C.33D.34

查看答案和解析>>

同步練習(xí)冊(cè)答案