分析 an+1an-2an+1+1=0,n∈N*,可得an+1=$\frac{1}{2-{a}_{n}}$,作差$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$,證明為常數(shù)即可.
解答 證明:∵an+1an-2an+1+1=0,n∈N*,
∴an+1=$\frac{1}{2-{a}_{n}}$,
∴$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{1}{\frac{1}{2-{a}_{n}}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{2-{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=-1.
∴數(shù)列{$\frac{1}{{a}_{n}-1}$}是等差數(shù)列,公差為-1,首項為-2.
點評 本題考查了等差數(shù)列的定義通項公式、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com