以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個數(shù)字模糊,無法確認(rèn),假設(shè)這個數(shù)字具有隨機(jī)性,并在圖中以a表示.
(Ⅰ)若甲、乙兩個小組的數(shù)學(xué)平均成績相同,求a的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率,莖葉圖
專題:概率與統(tǒng)計
分析:(Ⅰ)直接由甲、乙兩個小組的數(shù)學(xué)平均成績相等列式求解a的值;
(Ⅱ)由(Ⅰ)中求得的結(jié)果可得,當(dāng)a=2,…,9時,乙組平均成績超過甲組平均成績,然后由古典概率模型概率計算公式求概率;
解答: 解:(Ⅰ)依題意,得 
1
3
(88+92+92)=
1
3
[90+91+(90+a)]
,
解得 a=1;
(Ⅱ)設(shè)“乙組平均成績超過甲組平均成績”為事件A,依題意 a=0,1,2,…,9,共有10種可能
由(Ⅰ)可知,當(dāng)a=1時甲、乙兩個小組的數(shù)學(xué)平均成績相同,
所以當(dāng)a=2,3,4,…,9時,乙組平均成績超過甲組平均成績,共有8種可能
所以乙組平均成績超過甲組平均成績的概率P(A)=
8
10
=
4
5
點評:本題考查了莖葉圖,考查了等可能事件的概率及古典概型概率計算公式,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3.8756
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=sinx+mcosx與g(x)=msinx+cosx給出以下結(jié)論:
①函數(shù)f(x)與g(x)有相同的值域.
②函數(shù)f(x)與g(x)的交點隨m的取值的變化而變化.
③函數(shù)f(x)的圖象經(jīng)過平移是不可能得到函數(shù)g(x) 圖象的.
④函數(shù)f(x)與g(x)圖象關(guān)于直線x=
π
4
對稱.
⑤存在 k∈z,使得函數(shù)f(x)與g(x)的初相和為
π
2
+2kπ(k∈Z)
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場準(zhǔn)備舉行促銷活動,對選出的某品牌商品采用的促銷方案是有獎銷售,即在該商品價格的基礎(chǔ)上將價格提高180元,同時允許顧客有3次抽獎的機(jī)會,若中獎,則每次中獎都可獲得一定數(shù)額的獎金.假設(shè)顧客每次抽獎時獲獎的概率為
1
2
,請問:商場應(yīng)將中獎獎金數(shù)額最高定為多少元,才能使促銷方案對自己有利(顧客獲獎獎金數(shù)的期望值不大于商場的提價數(shù)額)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x
-
2
3x
5的展開式中的常數(shù)項是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個區(qū)間,若存在x0∈D,使f(x0)=-x0,則稱x0是f(x)的一個“次不動點”,也稱f(x)在區(qū)間D上存在次不動點.若函數(shù)f(x)=ax2-3x-a+
5
2
在區(qū)間[1,4]上存在次不動點,則實數(shù)a的取值范圍是(  )
A、(-∞,0)
B、(0,
1
2
C、[
1
2
,+∞)
D、(-∞,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在區(qū)間[1,+∞)上的函數(shù)f(x)滿足:①f(2x)=2f(x);②當(dāng)2≤x≤4時,f(x)=1-|x-3|,則集合S={x|f(x)=f(34)}中的最小元素是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個算法的流程圖,若輸入x的值為2,則輸出y的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某四面體的三視圖如圖所示,則該四面體的表面積是( 。
A、21B、27C、54D、60

查看答案和解析>>

同步練習(xí)冊答案