12.已知長方體ABCD-A1B1C1D1中,AB=AD=2.AA1=4,則該長方體外接球的表面積為24π.

分析 由長方體的對角線公式,算出長方體對角線AC1的長,從而得到長方體外接球的直徑,結(jié)合球的表面積公式即可得到,該球的表面積

解答 解:∵長方體ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,
∴長方體的對角線AC1=$\sqrt{{2}^{2}+{2}^{2}+{4}^{2}}$=2$\sqrt{6}$,∵長方體ABCD-A1B1C1D1的各頂點都在同一球面上,
∴球的一條直徑為AC1,可得半徑R=$\sqrt{6}$,
因此,該球的表面積為S=4πR2=4π×($\sqrt{6}$)2=24π
故答案為:24π.

點評 本題考查了長方體的對角線公式、長方體的外接球和球的表面積公式等知識,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.二項式(2x+y)6的展開式中,含x2y4的項的系數(shù)是60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知側(cè)棱長為2的正三棱錐S-ABC如圖所示,其側(cè)面是頂角為20°的等腰三角形,一只螞蟻從點A出發(fā),圍繞棱錐側(cè)面爬行一周后又回到點A,則螞蟻爬行的最短路程為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.四面體ABCD各個點都在球面上,AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,CD=5,BC=4,則該球的體積是$\frac{125\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,用35個單位正方形拼成一個矩形,點P1、P2、P3、P4以及四個標記為“▲”的點在正方形的頂點處,設(shè)集合Ω={P1,P2,P3,P4},點P∈Ω,過P作直線lP,使得不在lP上的“▲”的點分布在lP的兩側(cè).用D1(lP)和D2(lP)分別表示lP一側(cè)和另一側(cè)的“▲”的點到lP的距離之和.若過P的直線lP中有且只有一條滿足D1(lP)=D2(lP),則Ω中所有這樣的P為P1、P3、P4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.三棱錐P-ABC中,PA=AB=BC=2,PB=AC=2$\sqrt{2}$,PC=2$\sqrt{3}$,則三棱錐P-ABC的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖是正方體的平面展開圖,則在這個正方體中,AM與BN所成角的大小為( 。
A.B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則f(-2)+f(log26)=( 。
A.2B.6C.8D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_3}x,x>0}\end{array}}$,則$f({f({\frac{1}{9}})})$的值是( 。
A.$\frac{1}{4}$B.4C.$\frac{1}{9}$log32D.-4

查看答案和解析>>

同步練習冊答案