如圖,四邊形ABCD是正方形,MA⊥平面ABCD,MA∥PB,PB=AB=2MA=2.
(1)求證:DM∥面PBC;
(2)求證:面PBD⊥面PAC.
考點:平面與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關系與距離
分析:(1)平面AMD內的直線MA,平行平面BPC內的直線PB,證明平面AMD∥平面BPC,再證明DM∥面PBC;
(2)證明PB⊥平面ABCD、AC⊥平面PBD,即可證明面PBD⊥面PAC.
解答: 證明:(1)因為PB⊥平面ABCD,MA⊥平面ABCD,所以PB∥MA.因PB?平面BPC,MA不在平面BPC內,所以MA∥平面BPC.同理DA∥平面BPC,因為MA?平面AMD,AD?平面AMD,MA∩AD=A,所以平面AMD∥平面BPC,
因為DM?平面AMD,
所以DM∥面PBC;
(2)因為PB∥MA,MA⊥平面ABCD,
所以PB⊥平面ABCD,
所以PB⊥AC,
因為AC⊥BD,PB∩BD=B,
所以AC⊥平面PBD,
因為AC?面PAC,
所以面PBD⊥面PAC.
點評:本題考查平面與平面垂直的判定,平面與平面平行的判定,考查空間想象能力,邏輯思維能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x3-(
1
2
x的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關于x的不等式:|x+2|-|2x-5|>a+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,異面直線A1B與AC所成的角是
 
°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD中點,M是棱PC上的點,PD=PA=2,BC=
1
2
AD=1,CD=
3

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)求證:平面PQB⊥底面PAD;
(3)(僅理科做)若PM=3MC,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,則折起后形成的三棱錐D-ABC的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:
①函數(shù)y=lg(x2-ax-a)的值域為R,則a∈(-4,0);
②O是△ABC所在平面上一定點,動點P滿足
OP
=
OA
+λ(
AB
+
AC
)
且λ∈[0,+∞),則P的軌跡一定經(jīng)過△ABC的重心;
③△ABC中,角A,B,C所對的邊分別為a,b,c,若acosA=bcosB,則△ABC是等腰三角形;
④若函數(shù)f(x)=x+log2(x+
x2+1
),則“m+n≥0”是“f(m)+f(n)≥0”的充要條件.其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一幾何體的直觀圖如圖所示:
(1)畫出該幾何體的三視圖.
(2)求該幾何體的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點(-2,4)且在兩坐標軸上截距的絕對值相等的直線有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

同步練習冊答案