【題目】某校高一組織一次數(shù)學(xué)競賽,選取50名學(xué)生成績(百分制,均為整數(shù)),根據(jù)這50名學(xué)生的成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為.
(1)求頻率分布直方圖中a的值;
(2)估計選取的50名學(xué)生在這次數(shù)學(xué)競賽中的平均成績;
(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個樣本容量為5的樣本,
再隨機(jī)抽取2人的成績,求恰有一人成績在分?jǐn)?shù)段內(nèi)的概率.
【答案】(1);(2)76.2分;(3)0.6
【解析】
(1)根據(jù)頻率和為1,即可求解;
(2)由頻率直方圖,按照平均數(shù)公式,即可求出結(jié)論;
(3)求出根據(jù)頻率求出5人中在、的人數(shù),并按兩組編號,列舉出從5人抽取2人的所有情況,計算恰有一人成績在分?jǐn)?shù)段的基本事件,即可求解.
(1)因?yàn)?/span>,
所以.
(2)由所給頻率分布直方圖知,估計該校高一年級所有學(xué)生在這次數(shù)學(xué)競賽中的平均成績?yōu)椋?/span>
.
(3)由題意知:分?jǐn)?shù)段在的人數(shù)與分?jǐn)?shù)段在的人數(shù)之比為,
用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個樣本容量為5的樣本,
需在分?jǐn)?shù)段在內(nèi)抽取2人,記為,;
需在分?jǐn)?shù)段在內(nèi)抽取3人,即為;
所有可能的結(jié)果共有10種,它們是,
,,
又因?yàn)樗槿?/span>2人至少有一人成績在分?jǐn)?shù)段內(nèi)的結(jié)果有6種,
即,
故所求的概率為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算木》中將底面為長方形,且有一條側(cè)棱與底面垂直的四棱錐稱之為“陽馬”,現(xiàn)有一陽馬,其正視圖和側(cè)視圖是如圖所示的直角三角形,該“陽馬”的體積為,若該陽馬的頂點(diǎn)都在同一個球面上,則該球的表面積為( )
正視圖 側(cè)視圖
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值和最小值,設(shè).
(1)求,的值;
(2)若不等式在上有解,求實(shí)數(shù)的取值范圍;
(3)若有三個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+e-x,g(x)=2x+ax3,a為實(shí)常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=-1時,證明:存在x0∈(0,1),使得y=f(x)和y=g(x)的圖象在x=x0處的切線互相平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運(yùn)算后得到1,則的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的不等式的解集為,且中只有一個整數(shù),則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心為,直線過點(diǎn)且與軸不重合,直線交圓于,兩點(diǎn),過點(diǎn)作的平行線交于點(diǎn).
(1)證明為定值,并寫出點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與圓交于,兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個人收入的提高.自2018年10月1日起,個人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
(1)假如小李某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,y表示應(yīng)納的稅,試寫出調(diào)整前后y關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
先從收入在[3000,5000)及[5000,7000)的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小李該月的工資、薪金等稅前收入為7500元時,請你幫小李算一下調(diào)整后小李的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com