【題目】已知數(shù)列滿足奇數(shù)項(xiàng)成等差,公差為,偶數(shù)項(xiàng)成等比,公比為,且數(shù)列的前項(xiàng)和為,.

,.

①求數(shù)列的通項(xiàng)公式;

②若,求正整數(shù)的值;

,對(duì)任意給定的,是否存在實(shí)數(shù),使得對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】,;②;存在;的取值范圍為.

【解析】

先由,,聯(lián)立求得,;①先對(duì)進(jìn)行分類(正奇數(shù)與正偶數(shù)),分別求通項(xiàng)公式;②先對(duì)進(jìn)行分類(正奇數(shù)與正偶數(shù)),利用①求得的通項(xiàng)公式分別求滿足題意的,再綜合;

分當(dāng)兩種情況分別研究,求出的取值范圍.

解:①因?yàn)?/span>,所以,即解得.

當(dāng)為奇數(shù)時(shí),設(shè),則

當(dāng)為偶數(shù)時(shí),設(shè),則

綜上.

②當(dāng)為奇數(shù)時(shí),,即,即,當(dāng)時(shí),不合題意;

當(dāng)時(shí),右邊小于2,左邊大于2,等式不成立;

當(dāng)為偶數(shù)時(shí),,,所以.綜上,.

當(dāng)時(shí),由于各項(xiàng),所以,所以符合題意;

當(dāng)時(shí),假設(shè)對(duì)任意恒成立,即對(duì)任意恒成立,

所以,令,即對(duì)任意恒成立

先證:對(duì)任意恒成立,

,則,

所以上遞減,在上遞增,

所以,即對(duì)任意恒成立,所以,

所以,所以當(dāng)時(shí),,

,解得

所以當(dāng)時(shí),這與對(duì)任意恒成立矛盾,所以當(dāng)時(shí)不合題意;

綜上的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y24x焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),且|AB|4,若原點(diǎn)O是△ABC的垂心,則點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義行列式的運(yùn)算如下:,已函數(shù)以下命題正確的是(

①對(duì),都有;②若,對(duì),總存在非零常數(shù)了,使得;③若存在直線的圖象無(wú)公共點(diǎn),且使的圖案位于直線兩側(cè),此直線即稱為函數(shù)的分界線.的分界線的斜率的取值范圍是;④函數(shù)的零點(diǎn)有無(wú)數(shù)個(gè).

A.①③④B.①②④

C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我已經(jīng)8個(gè)月沒有戲拍了迪麗熱巴在8月的一檔綜藝節(jié)目上說(shuō),霍建華在家里開玩笑時(shí)說(shuō)到我失業(yè)很久了;明道也在參加《演員請(qǐng)就位》時(shí)透露,已經(jīng)大半年沒有演過(guò)戲.為了了解演員的生存現(xiàn)狀,什么樣的演員才有戲演,有人搜集了內(nèi)地、港澳臺(tái)共計(jì)9481名演員的演藝生涯資料,在統(tǒng)計(jì)的所有演員資料后得到以下結(jié)論:①有的人在2019年沒有在影劇里露過(guò)臉;②2019年備案的電視劇數(shù)量較2016年時(shí)下滑超過(guò)三分之一;③女演員面臨的競(jìng)爭(zhēng)更加激烈;④演員的艱難程度隨著年齡的增加而降低.請(qǐng)問(wèn):以下判斷正確的是(

A.調(diào)查采用了分層抽樣B.調(diào)查采用了簡(jiǎn)單隨機(jī)抽樣

C.調(diào)查采用了系統(tǒng)抽樣D.非抽樣案例

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形中,,,為邊的中點(diǎn),將沿直線翻折成.為線段的中點(diǎn).

1)證明平面,并求的長(zhǎng);

2)在翻折過(guò)程中,當(dāng)三棱錐的體積取最大時(shí),求平面與平面所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱錐的側(cè)棱和底面邊長(zhǎng)相等,在這個(gè)正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:

若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);

若這兩條棱所在的直線平行,則;

若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).

(1)求的值;

(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

1)求橢圓的方程;

2)若斜率為的直線與橢圓交于不同的兩點(diǎn),,且線段的垂直平分線過(guò)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,PCBC,點(diǎn)EPC的中點(diǎn),且平面PBC⊥平面ABCD.求證:

1)求證:PA∥平面BDE

2)求證:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某外賣平臺(tái)為提高外賣配送效率,針對(duì)外賣配送業(yè)務(wù)提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣騎手,并將他們隨機(jī)分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據(jù)騎手在相同時(shí)間內(nèi)完成配送訂單的數(shù)量(單位:?jiǎn)危├L制了如下莖葉圖:

1)根據(jù)莖葉圖,求各組內(nèi)25位騎手完成訂單數(shù)的中位數(shù),已知用甲配送方案的25位騎手完成訂單數(shù)的平均數(shù)為52,結(jié)合中位數(shù)與平均數(shù)判斷哪種配送方案的效率更高,并說(shuō)明理由;

2)設(shè)所有50名騎手在相同時(shí)間內(nèi)完成訂單數(shù)的平均數(shù),將完成訂單數(shù)超過(guò)記為“優(yōu)秀”,不超過(guò)記為“一般”,然后將騎手的對(duì)應(yīng)人數(shù)填入下面列聯(lián)表;

優(yōu)秀

一般

甲配送方案

乙配送方案

3)根據(jù)(2)中的列聯(lián)表,判斷能否有的把握認(rèn)為兩種配送方案的效率有差異.

附:,其中.

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

同步練習(xí)冊(cè)答案