【題目】已知橢圓的離心率為,短軸長(zhǎng)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若橢圓的左焦點(diǎn)為,過點(diǎn)的直線與橢圓交于兩點(diǎn),則在軸上是否存在一個(gè)定點(diǎn)使得直線的斜率互為相反數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,也請(qǐng)說明理由.

【答案】(1);(2)見解析

【解析】

1)據(jù)題意,得 ,求解方程組確定a,b的值即可求得橢圓方程;

2)據(jù)題設(shè)知點(diǎn),當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理有 假設(shè)存在點(diǎn)M滿足題意,則,結(jié)合韋達(dá)定理求解實(shí)數(shù)m的值即可;然后討論斜率不存在的情況即可確定定點(diǎn)M存在.

1)據(jù)題意,得

解得,

所以橢圓的標(biāo)準(zhǔn)方程為

2)據(jù)題設(shè)知點(diǎn),當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

,得

設(shè),則

設(shè),則直線的斜率分別滿足

又因?yàn)橹本的斜率互為相反數(shù),

所以,

所以,所以

所以,

所以,所以

對(duì)任意恒成立,則,

當(dāng)直線的斜率不存在時(shí),若,則點(diǎn)滿足直線的斜率互為相反數(shù).

綜上,在軸上存在一個(gè)定點(diǎn),使得直線的斜率互為相反數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高一年級(jí)學(xué)生的智力水平,某校按1:10的比例對(duì)700名高一學(xué)生按性別分別進(jìn)行“智力評(píng)分”抽樣調(diào)查,測(cè)得“智力評(píng)分”的頻數(shù)分布表如表1、表2所示.

表1:男生“智力評(píng)分”頻數(shù)分布表

智力評(píng)分/分

頻數(shù)

2

5

14

13

4

2

表2:女生“智力評(píng)分”頻數(shù)分布表

智力評(píng)分/分

頻數(shù)

1

7

12

6

3

1

(1)求高一年級(jí)的男生人數(shù),并完成下面男生“智力評(píng)分”的頻率分布直方圖;

(2)估計(jì)該校高一年級(jí)學(xué)生“智力評(píng)分”在內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長(zhǎng)為正整數(shù)m、n的矩形劃分成若干邊長(zhǎng)均為正整數(shù)的正方形,每個(gè)正方形的邊均平行于矩形的相應(yīng)邊,試求這些正方形邊長(zhǎng)之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量平行.

1)求A

2)若,b2,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最大值是0,函數(shù)

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓盤上有一指針,開始時(shí)指向圓盤的正上方.指針每次順時(shí)針方向繞圓盤中心轉(zhuǎn)動(dòng)一角,且,經(jīng)2004次旋轉(zhuǎn),第一次回到了其初始位置,即又指向了圓盤的正上方.試問:有多少個(gè)可能的不同值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l的極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數(shù)方程為(t為參數(shù)),圓C2的普通方程為x2+y2+2x=0.

(1)求C1,C2的極坐標(biāo)方程;

(2)若l與C1交于點(diǎn)A,l與C2交于點(diǎn)B,當(dāng)|AB|=2時(shí),求△ABC2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正方形被剖分為4個(gè)正方形,剖分圖的邊數(shù)為12.若一個(gè)正方形被剖分為2005個(gè)凸多邊形,試求剖分圖中邊數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案