【題目】已知橢圓的離心率為,短軸長(zhǎng)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的左焦點(diǎn)為,過點(diǎn)的直線與橢圓交于兩點(diǎn),則在軸上是否存在一個(gè)定點(diǎn)使得直線的斜率互為相反數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,也請(qǐng)說明理由.
【答案】(1);(2)見解析
【解析】
(1)據(jù)題意,得 ,求解方程組確定a,b的值即可求得橢圓方程;
(2)據(jù)題設(shè)知點(diǎn),當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理有. 假設(shè)存在點(diǎn)M滿足題意,則,結(jié)合韋達(dá)定理求解實(shí)數(shù)m的值即可;然后討論斜率不存在的情況即可確定定點(diǎn)M存在.
(1)據(jù)題意,得
解得,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)據(jù)題設(shè)知點(diǎn),當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.
由,得.
設(shè),則.
設(shè),則直線的斜率分別滿足.
又因?yàn)橹本的斜率互為相反數(shù),
所以,
所以,所以,
所以,
所以,所以.
若對(duì)任意恒成立,則,
當(dāng)直線的斜率不存在時(shí),若,則點(diǎn)滿足直線的斜率互為相反數(shù).
綜上,在軸上存在一個(gè)定點(diǎn),使得直線的斜率互為相反數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解高一年級(jí)學(xué)生的智力水平,某校按1:10的比例對(duì)700名高一學(xué)生按性別分別進(jìn)行“智力評(píng)分”抽樣調(diào)查,測(cè)得“智力評(píng)分”的頻數(shù)分布表如表1、表2所示.
表1:男生“智力評(píng)分”頻數(shù)分布表
智力評(píng)分/分 |
| |||||
頻數(shù) | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生“智力評(píng)分”頻數(shù)分布表
智力評(píng)分/分 | ||||||
頻數(shù) | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求高一年級(jí)的男生人數(shù),并完成下面男生“智力評(píng)分”的頻率分布直方圖;
(2)估計(jì)該校高一年級(jí)學(xué)生“智力評(píng)分”在內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長(zhǎng)為正整數(shù)m、n的矩形劃分成若干邊長(zhǎng)均為正整數(shù)的正方形,每個(gè)正方形的邊均平行于矩形的相應(yīng)邊,試求這些正方形邊長(zhǎng)之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最大值是0,函數(shù) .
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓盤上有一指針,開始時(shí)指向圓盤的正上方.指針每次順時(shí)針方向繞圓盤中心轉(zhuǎn)動(dòng)一角,且,經(jīng)2004次旋轉(zhuǎn),第一次回到了其初始位置,即又指向了圓盤的正上方.試問:有多少個(gè)可能的不同值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l的極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數(shù)方程為(t為參數(shù)),圓C2的普通方程為x2+y2+2x=0.
(1)求C1,C2的極坐標(biāo)方程;
(2)若l與C1交于點(diǎn)A,l與C2交于點(diǎn)B,當(dāng)|AB|=2時(shí),求△ABC2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方形被剖分為4個(gè)正方形,剖分圖的邊數(shù)為12.若一個(gè)正方形被剖分為2005個(gè)凸多邊形,試求剖分圖中邊數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com