分析 (1)連接BD,作BO⊥AD,垂足為O,利用三角函數(shù),結(jié)合勾股定理,求AD的長(zhǎng);
(2)由題意,梯形的高為6sinα,AD=6+12cosα,所圍成的等腰梯形ABCD面積S=$\frac{6+6+12cosα}{2}×6sinα$=36sinα(1+cosα),利用導(dǎo)數(shù)確定單調(diào)性,即可求出所圍成的等腰梯形ABCD面積的最大值.
解答 解:(1)連接BD,作BO⊥AD,垂足為O,則AO=3,BO=3$\sqrt{3}$,BD=6$\sqrt{2}$,
∴OD=$\sqrt{27+72}$=3$\sqrt{11}$,
∴AD=AO+OD=3+3$\sqrt{11}$;
(2)由題意,梯形的高為6sinα,AD=6+12cosα,
∴所圍成的等腰梯形ABCD面積S=$\frac{6+6+12cosα}{2}×6sinα$=36sinα(1+cosα),
S′=36(2cosα-1)(cosα+1),
∴0<α<$\frac{π}{3}$,S′>0,$\frac{π}{3}$,<α<π,S′<0,
∴α=$\frac{π}{3}$,S取得最大值27$\sqrt{3}$.
點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{3}{4}$) | B. | [$\frac{3}{4}$,$\frac{4}{3}$) | C. | $[\frac{3}{4},+∞)$ | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com