15.已知不等式組$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面區(qū)域?yàn)镈,若?(x,y)∈D,|x|+2y≤a為真命題,則實(shí)數(shù)a的取值范圍是( 。
A.[10,+∞)B.[11,+∞)C.[13,+∞)D.[14,+∞)

分析 畫出約束條件的可行域,求出|x|+2y的最大值,即可得到?(x,y)∈D,|x|+2y≤a為真命題,實(shí)數(shù)a的取值范圍.

解答 解:不等式組$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面區(qū)域?yàn)镈,如圖:
當(dāng)x≥0時(shí),z=|x|+2y=x+2y,z=x+2y經(jīng)過B時(shí)取得最大值,
由$\left\{\begin{array}{l}{y=5}\\{2x-y+3=0}\end{array}\right.$可得B(1,5),此時(shí)z的最大值為:11.
當(dāng)x<0時(shí),z=|x|+2y=-x+2y,z=-x+2y經(jīng)過A時(shí)取得最大值,
由$\left\{\begin{array}{l}{y=5}\\{x+y-1=0}\end{array}\right.$,可得A(-4,5),此時(shí)z的最大值為:
14.
若?(x,y)∈D,|x|+2y≤a為真命題,則實(shí)數(shù)a的取值范圍:[14,+∞).
故選:D.

點(diǎn)評 本題考查命題的真假的判斷與應(yīng)用,線性規(guī)劃的簡單應(yīng)用,考查轉(zhuǎn)化思想以及數(shù)形結(jié)合思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)復(fù)數(shù)z=$\frac{2i}{1+i}$,則其共軛復(fù)數(shù)為(  )
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知cosα=$\frac{3}{5}$,α∈(π,2π),則tan(α-$\frac{3π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲乙兩位同學(xué)進(jìn)行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計(jì)這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個(gè)隨機(jī)數(shù)為一組,代表3局比賽的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了30組隨機(jī)數(shù)
102   231   146   027   590   763   245   207   310   386   350   481   337   286   139
579   684   487   370   175   772   235   246   487   569   047   008   341   287   114
據(jù)此估計(jì),這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{11}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知0<a<1,函數(shù)f(x)=logax.
(1)若f(5a-1)≥f(2a),求實(shí)數(shù)a的最大值;
(2)當(dāng)a=$\frac{1}{2}$時(shí),設(shè)g(x)=f(x)-3x+2m,若函數(shù)g(x)在(1,2)上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:實(shí)數(shù)x滿足x2-5ax+4a2<0,其中a>0,命題q:實(shí)數(shù)x滿足$\left\{\begin{array}{l}{{x}^{2}-2x-8≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$.
(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,a、b、c是角A、B、C的對邊,則下列結(jié)論正確的序號是②③.
①若a、b、c成等差數(shù)列,則B=$\frac{π}{3}$;               ②若c=4,b=2$\sqrt{3}$,B=$\frac{π}{6}$,則△ABC有兩解;
③若B=$\frac{π}{6}$,b=1,ac=2$\sqrt{3}$,則a+c=2+$\sqrt{3}$;     ④若(2c-b)cosA=acosB,則A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=2sinx+1,則f′($\frac{π}{4}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列直線的一個(gè)法向量、一個(gè)方向向量和斜率k(如果斜率存在的話)
(1)x-3y+5=0;
(2)y=3x+7;
(3)2x+5=0;
(4)4y+1=0.

查看答案和解析>>

同步練習(xí)冊答案