9.若焦點(diǎn)在x軸上的橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{5}=1\;(a>0)$的離心率為$\frac{2}{3}$,則a的值為( 。
A.9B.6C.3D.2

分析 利用橢圓的離心率,列出方程求解即可.

解答 解:焦點(diǎn)在x軸上的橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{5}=1\;(a>0)$,可得c=$\sqrt{{a}^{2}-5}$,
離心率為$\frac{2}{3}$,
可得:$\frac{\sqrt{{a}^{2}-5}}{a}=\frac{2}{3}$,
解得a=3.
故選:C.

點(diǎn)評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{x+y≤10}\\{x≥3}\\{y≥6}\end{array}\right.$,則點(diǎn)集A(x,y)表示的區(qū)域的面積為$\frac{1}{2}$;目標(biāo)函數(shù)z=x-y的取值范圍是[-4,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}-4x-2,x≥0}\\{{x^2}+4x-2,x<0}\end{array}}\right.$,則對任意x1,x2,x3∈R,若0<|x1|<|x2|<2<|x3|,則下列不等式一定成立的是(  )
A.f(x1)-f(x2)>0B.f(x1)-f(x3)>0C.f(x1)-f(x2)<0D.f(x1)-f(x3)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若A為不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+2≥0}\end{array}\right.$表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到0時,動直線x+y=a掃過A中的那部分區(qū)域的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學(xué)生的人數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線lk:y=kx+k2(k∈R),下列說法中正確的是①③④.(注:把你認(rèn)為所有正確選項(xiàng)的序號均填上)
①lk與拋物線$y=-\frac{x^2}{4}$均相切;      
②lk與圓x2+(y+1)2=1均無交點(diǎn);
③存在直線l,使得l與lk均不相交;   
④對任意的i,j∈R,直線li,lj相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x-y+1=0的傾斜角為( 。
A.-45°B.-30°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函數(shù)y=xg(x)的單調(diào)區(qū)間;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(結(jié)果用t表示);
(Ⅲ)關(guān)于x的不等式g(x)-$\frac{a}{2}$f(x)≤($\frac{3}{2}$a-1)x-1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=$\frac{a{x}^{2}+x+1}{x}$在[2,+∞)上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍為[$\frac{1}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案