【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度x的一次函數(shù).
①當時,求函數(shù)的表達式.
②當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值(精確到1輛/小時).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的產(chǎn)品中抽取1000件測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結(jié)果得到頻率分布直方圖如圖所示.
(Ⅰ)求這1000件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差s2(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).
(Ⅱ)由頻率分布直方圖可以認為這種產(chǎn)品的質(zhì)量指標值Z服從正態(tài)分布N(μ,δ2),其中μ近似為樣本平均數(shù),δ2近似為樣本方差s2.
利用該正態(tài)分布,求P(175.6<Z<224.4);
②某用戶從該企業(yè)購買了100件這種產(chǎn)品,估計其中質(zhì)量指標值位于區(qū)間(175.6,224.4)的產(chǎn)品件數(shù).(精確到個位)
附: ≈12.2,若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,
P(μ-2δ<Z<μ+2δ)=0.9544
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓為參數(shù)), 是上的動點,且滿足為坐標原點),以原點為極點, 軸的正半軸為極軸建立坐標系,點的極坐標為.
(1)求線段的中點的軌跡的普通方程;
(2)利用橢圓的極坐標方程證明為定值,并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,現(xiàn)從中隨機抽取100人的數(shù)學與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫墓灿?/span>.
(Ⅰ)若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求的值;
(Ⅱ)已知,求數(shù)學成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,記
。
(1) 判斷的奇偶性(不用證明)并寫出的單調(diào)區(qū)間;
(2)若對于一切恒成立,求實數(shù)的取值范圍.
(3)對任意,都存在,使得, .若,求實數(shù)的值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)定義在上的奇函數(shù), 的最大值為.
(1)求函數(shù)的解析式;
(2)關(guān)于的方程在上有解,求實數(shù)的取值范圍;
(3)若存在,不等式成立,請同學們探究實數(shù)的所有可能取值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用另一種方法表示下列集合.
(1){x||x|≤2,x∈Z};
(2){能被3整除,且小于10的正數(shù)};
(3)坐標平面內(nèi)在第四象限的點組成的集合.
(4){(x,y)|x+y=6,x,y均為正整數(shù)};
(5){-3,-1,1,3,5}.
(6)被3除余2的正整數(shù)集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間20名工人年齡數(shù)據(jù)如下表:
年齡(歲) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合計 |
工人數(shù)(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求這20名工人年齡的眾數(shù)與平均數(shù);
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;
(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com