已知△ABC中,∠C=90°,D為斜邊AB上靠近頂點(diǎn)A的三等分點(diǎn).
(I)設(shè)數(shù)學(xué)公式,求數(shù)學(xué)公式
(II)若數(shù)學(xué)公式,求數(shù)學(xué)公式數(shù)學(xué)公式方向上的投影.

解:(1)∵,即,…(4分)
,又,故 .…(6分)
(2)過C作CE⊥AB于E,則由射影定理得,∴
又因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/2950.png' />在方向上的投影為負(fù),故方向上的投影為.…(12分)
分析:(1)由條件可得,花簡(jiǎn)求得
(2)過C作CE⊥AB于E,則由射影定理得,故.再由方向上的投影為負(fù)可得結(jié)果.
點(diǎn)評(píng):本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,三角形中的幾何計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠C=90°,直線PA⊥平面ABC,若AB=5,AC=2,則點(diǎn)B到平面PAC的距離為( 。
A、
13
B、
21
C、2
6
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,c-b=1,cosA=
12
13
,S△ABC=30,則a=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)已知△ABC中,∠C=90°,AC=3,BC=4.一個(gè)圓心為M,半徑為
1
4
的圓在△ABC內(nèi),沿著△ABC的邊滾動(dòng)一周回到原位.在滾動(dòng)過程中,圓M至少與△ABC的一邊相切,則點(diǎn)M到△ABC頂點(diǎn)的最短距離是
2
4
2
4
,點(diǎn)M的運(yùn)動(dòng)軌跡的周長(zhǎng)是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,∠C=
π
2
.設(shè)∠CBA=θ,BC=a,它的內(nèi)接正方形DEFG的一邊EF在斜邊AB上,D、G分別在AC、BC上.假設(shè)△ABC的面積為S,正方形DEFG的面積為T.用a,θ表示△ABC的面積S和正方形DEFG的面積T;
設(shè)f(θ)=
T
S
,試求f(θ)的最大值P,并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,c=
5
,C=
π
3
,a+b=
2
ab,則△ABC的面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案