7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2sinx,0≤x≤π}\\{{x}^{2},x<0}\end{array}\right.$,則函數(shù)y=f(f(x))-1的零點的個數(shù)是( 。
A.3B.4C.5D.無數(shù)個

分析 化成f(x)的圖象,根據(jù)圖象可得f(x)的范圍,對其進行討論,判斷其交點即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{2sinx,0≤x≤π}\\{{x}^{2},x<0}\end{array}\right.$,圖象如下:
函數(shù)y=f(f(x))-1的零點,令f(x)=t
那么,原函數(shù)看成是函數(shù)y=f(t)與函數(shù)y=1的交點的個數(shù)
當f(x)<0時,y=f(t)圖象與y=1沒有交點.
當0≤f(x)≤2時,y=f(t)圖象與y=1有3交點.
當f(x)>2時,y=f(t)圖象與y=1有1交點.
綜合可得函數(shù)y=f(f(x))-1的零點的個數(shù)是4.
故選B.

點評 本題考查了復(fù)合函數(shù)的性質(zhì)及其圖象的關(guān)系.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)P為等邊三角形ABC所在平面內(nèi)的一點,滿足$\overrightarrow{AP}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$,若AB=1,則$\overrightarrow{PB}$•$\overrightarrow{PC}$=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖是一個程序框圖,則輸出的n的值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的函數(shù)f(x)滿足:$f(x+1)=\frac{1}{f(x)}$,x∈(0,1]時,f(x)=2x,則f(log29)等于( 。
A...B.$\frac{9}{8}$C.$\frac{8}{9}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.化簡:已知α是第四象限角,則$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,已知斜三棱柱ABC-A1B1C1,點M,N分別在AC1和BC上,且滿足$\overrightarrow{AM}$=k$\overrightarrow{A{C}_{1}}$,$\overrightarrow{BN}$=k$\overrightarrow{BC}$(0≤k≤1).
①向量$\overrightarrow{MN}$是否與向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面?
②直線MN是否與平面ABB1A1平行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A、B、C所對的邊長分別為a,b,c,如果sin2B=sinAsinC,且c=2a則cosB的值等于( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)正方體ABCD-A1B1C1D1的棱長為2,則點A1到平面B1AC的距離是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某幾何體的三視圖如圖所示,則該幾何體的體積為54π.

查看答案和解析>>

同步練習(xí)冊答案