分析 (1)降次化簡,結(jié)合三角函數(shù)的圖象及性質(zhì)即可求出f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,π]時,求出f(x)值域,即可得a,b的值.
解答 解:函數(shù)$f(x)=a(2{cos^2}\frac{x}{2}+sinx)+b$(a>0)
化簡可得:f(x)=asinx+acosx+b+a=$\sqrt{2}a$sin(x+$\frac{π}{4}$)+a+b.
令$-\frac{π}{2}+2kπ≤x+\frac{π}{4}≤\frac{π}{2}+2kπ$,k∈Z.
可得:$2kπ-\frac{3π}{4}$≤x≤$\frac{π}{4}+2kπ$.
∴f(x)的單調(diào)增區(qū)間為[$2kπ-\frac{3π}{4}$,$\frac{π}{4}+2kπ$],k∈Z.
(2)當(dāng)x∈[0,π]時,
可得:$x+\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$].
∴當(dāng)x+$\frac{π}{4}$=$\frac{π}{2}$時,函數(shù)f(x)取得最大值為$\sqrt{2}a+a+b$.
∴當(dāng)x+$\frac{π}{4}$=$\frac{5π}{4}$時,函數(shù)f(x)取得最小值為$-\frac{\sqrt{2}}{2}×\sqrt{2}a+a+b$.
由題意,可得:$\left\{\begin{array}{l}{\sqrt{2}a+a+b=4}\\{-\frac{\sqrt{2}}{2}×\sqrt{2}a+a+b=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=\sqrt{2}-1}\\{b=3}\end{array}\right.$.
故得當(dāng)x∈[0,π]時,f(x)值域為[3,4],此時a的值為$\sqrt{2}-1$,b的值為3.
點評 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在α,使得A′E⊥面A′BC | B. | 存在α,使得A′B⊥面A′CD | ||
C. | 存在α,使得A′E⊥面A′CD | D. | 存在α,使得A′B⊥面A′DE |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否近視/年級名次 | 前10名 | 后10名 |
近視 | 9 | 7 |
不近視 | 1 | 3 |
P(k2≥k | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1和2 | B. | 2和3 | C. | 3和4 | D. | 2和4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2018 | B. | 2017 | C. | 2016 | D. | 2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {0,1,2} | C. | {x|0≤x<3} | D. | {x|0≤x≤3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com