12.在△ABC中,如果lga-lgc=lgsinB=lg$\frac{\sqrt{2}}{2}$,且B為銳角,此三角形的形狀( 。
A.鈍角三角形B.直角三角形C.等腰直角三角形D.等邊三角形

分析 由已知得sinB=$\frac{\sqrt{2}}{2}$,$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{2}$,由此能推導(dǎo)出△ABC為等腰直角三角形.

解答 解:∵lgsinB=lg$\frac{\sqrt{2}}{2}$,
∴sinB=$\frac{\sqrt{2}}{2}$,
∵B為銳角,
∴B=45°.
又∵lga-lgc=lg$\frac{\sqrt{2}}{2}$,
∴$\frac{a}{c}$=$\frac{\sqrt{2}}{2}$.
由正弦定理,得$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{2}$,
∴$\sqrt{2}$sinC=2sinA=2sin(135°-C),
即sinC=sinC+cos C,
∴cosC=0,
∴C=90°,
故△ABC為等腰直角三角形.
故選:C.

點(diǎn)評(píng) 本題考查三角形形狀的判斷,解題時(shí)要注意正弦定理和對(duì)數(shù)性質(zhì)的合理運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知a${\;}^{\frac{1}{2}}$=4(a>0),則log2a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在三棱錐P-ABC中,PA⊥平面ABC,△ABC為正三角形,D、E分別為BC、CA的中點(diǎn),F(xiàn)為CD的中點(diǎn).若在線段PB上存在一點(diǎn)Q,使得平面ADQ∥平面PEF.
(1)求$\frac{PQ}{QB}$的值;
(2)設(shè)AB=PA=4,求三棱錐Q-PEF的體積;
(3)在第2問(wèn)的前提下,若平面QEF與線段PA交于點(diǎn)M,求AM.(注:本小問(wèn)文科生不做,理科生做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.以下四個(gè)對(duì)應(yīng)中,構(gòu)成映射的是( 。
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx-x,x>0}\\{-ln(-x)+x,x<0}\end{array}\right.$,則關(guān)于m的不等式f($\frac{1}{m}$)<ln$\frac{1}{2}$-2的解集為(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)A,B在球O的球面上,∠AOB=60°,且點(diǎn)P為球O的球面上的動(dòng)點(diǎn),O的表面積為16π,則三棱錐O-PAB的體積的最大值為( 。
A.$\frac{2}{3}$$\sqrt{3}$B.$\frac{1}{6}$$\sqrt{3}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在正三角形ABC中,D是BC邊上的點(diǎn),若AB=3,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示,陰影部分的面積S是h的函數(shù)(0≤h≤H),則該函數(shù)的圖象是下面四個(gè)圖形中的( 。 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知x,y,z∈R,若-1,x,y,z,-3成等比數(shù)列,則xz的值為( 。
A.$-\sqrt{3}$B.$\sqrt{3}$C.$±\sqrt{3}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案