分析 由{x|ax2+bx+c≥0}=[α,β]可知aq2+bq+c<0,再由{x|ax2+(b-1)x+c≥0}=[p,q]可得aq2+(b-1)q+c=0,從而可得q=aq2+bq+c<0,從而判斷正負(fù).
解答 解:∵{x|ax2+bx+c≥0}=[α,β],
而[p,q]?[α,β],
∴aq2+bq+c<0,
又∵{x|ax2+(b-1)x+c≥0}=[p,q],
∴aq2+(b-1)q+c=0,
∴q=aq2+bq+c<0,
故α、β、p、q都是負(fù)數(shù),
故答案為:4.
點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與應(yīng)用,同時(shí)考查了不等式與方程的關(guān)系應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 960 | B. | 1240 | C. | 1320 | D. | 1440 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 4i | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4≤k≤1 | B. | -1≤k≤4 | C. | 1≤k≤4 | D. | k≥1或k≤-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com