精英家教網 > 高中數學 > 題目詳情
8.設復數z滿足z(2+i)=10-5i,(i為虛數單位),則z的虛部為(  )
A.4B.3C.4iD.-4

分析 由z(2+i)=10-5i,得z=$\frac{10-5i}{2+i}$,然后利用復數代數形式的乘除運算化簡復數z,則z的虛部可求.

解答 解:由z(2+i)=10-5i,
得z=$\frac{10-5i}{2+i}$=$\frac{(10-5i)(2-i)}{(2+i)(2-i)}=\frac{15-20i}{5}$=3-4i,
則z的虛部為:-4.
故選:D.

點評 本題考查了復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

18.某城市理論預測2000年到2004年人口總數與年份的關系如表所示,線性回歸方程為$\hat y$=3.2x+3.6,則t=11.
年份200x(年)01234
人口數 y (十萬)578t19

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知兩個不同的平面α,β,若l∥α,則”l⊥β”是”α⊥β”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若集合M={x|y=$\sqrt{x-{x^2}}$},集合N={y|y=sinx},則M∩N=( 。
A.[-1,0]B.[-1,1]C.[0,1]D.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現統(tǒng)計了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱)76656
收益y(單位:元)165142148125150
(Ⅰ) 若某天售出8箱水,求預計收益是多少元?
(Ⅱ) 期中考試以后,學校決定將誠信用水的收益,以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學金500元;考入年級201-500名,獲二等獎學金300元;考入年級501名以后的特困生將不獲得獎學金.甲、乙兩名學生獲一等獎學金的概率均為$\frac{2}{5}$,獲二等獎學金的概率均為$\frac{1}{3}$,不獲得獎學金的概率均為$\frac{4}{15}$.
(1)在學生甲獲得獎學金條件下,求他獲得一等獎學金的概率;
(2)已知甲、乙兩名學生獲得哪個等級的獎學金是相互獨立的,求甲、乙兩名學生所獲得獎學金總金額X的分布列及數學期望
附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\overline{x}$=6,$\overline{y}$=146,$\sum_{i=1}^{5}$xiyi=4420,$\sum_{i=1}^{5}$xi2=182.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現統(tǒng)計了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱)76656
收益y(單位:元)165142148125150
(Ⅰ)求y關于x的線性回歸方程;
(Ⅱ)預測售出8箱水的收益是多少元?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,
參考數據:7×165+6×142+6×148+5×125+6×150=4420.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.設在正項數列{an}中,a12+$\frac{{{a}_{2}}^{2}}{{2}^{2}}$+$\frac{{{a}_{3}}^{2}}{{3}^{2}}$+…+$\frac{{{a}_{n}}^{2}}{{n}^{2}}$=4n-3,則數列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2n項和為$\frac{n}{4n+2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知{x|ax2+bx+c≥0}=[α,β],{x|ax2+(b-1)x+c≥0}=[p,q],若那么α、β、p、q中負數的個數為4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.若函數f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$.
(1)求$\frac{f(2)}{f(\frac{1}{2})}$的值.
(2)求f(3)+f(4)+…+f(2015)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{2015}$)的值.

查看答案和解析>>

同步練習冊答案