【題目】設(shè)函數(shù)f(x)=sin(2x+ )(x∈[0, ]),若方程f(x)=a恰好有三個(gè)根,分別為x1 , x2 , x3(x1<x2<x3),則x1+x2+x3的取值范圍是(
A.[
B.[ ,
C.[
D.[ ,

【答案】B
【解析】解:由題意x∈[0, ],則2x+ ∈[ , ], 畫出函數(shù)的大致圖象:
由圖得,當(dāng) 時(shí),方程f(x)=a恰好有三個(gè)根,
由2x+ = 得x= ,由2x+ = 得x= ,
由圖知,點(diǎn)(x1 , 0)與點(diǎn)(x2 , 0)關(guān)于直線 對(duì)稱,
點(diǎn)(x2 , 0)與點(diǎn)(x3 , 0)關(guān)于直線 對(duì)稱,
∴x1+x2= ,π≤x3 ,則 x1+x2+x3 ,
即x1+x2+x3的取值范圍是 ,
故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)滿足:f(x)= ,且f(x+2)=f(x),g(x)= ,則方程f(x)=g(x)在區(qū)間[﹣7,3]上的所有實(shí)數(shù)根之和為(
A.﹣9
B.﹣10
C.﹣11
D.﹣12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+5|,且f(x)≥m恒成立.
(Ⅰ)求m的取值范圍;
(Ⅱ)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),點(diǎn)P是雙曲線在第一象限內(nèi)的點(diǎn),直線PO,PF2分別交雙曲線C的左、右支于另一點(diǎn)M,N,若|PF1|=2|PF2|,且∠MF2N=120°,則雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若﹣1<x<1時(shí),均有f(x)≤0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒(méi)什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī),如表:

成績(jī)/編號(hào)

1

2

3

4

5

物理(x)

90

85

74

68

63

數(shù)學(xué)(y)

130

125

110

95

90

(參考公式: = , =
參考數(shù)據(jù):902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求數(shù)學(xué)成績(jī)y關(guān)于物理成績(jī)x的線性回歸方程 = x+ 精確到0.1),若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這五位學(xué)生中隨機(jī)選出三位參加一項(xiàng)知識(shí)競(jìng)賽,以X表示選中的學(xué)生的數(shù)學(xué)成績(jī)高于100分的人數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足an=2Sn+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=(2n﹣1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(I)作出函數(shù)f(x)的圖象;
(Ⅱ)若不等式 ≤f(x)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.
(Ⅰ)若a=1,解不等式f(x)<6;
(Ⅱ)若對(duì)任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案