7.已知:一元二次不等式-x2-2(a-1)x-1<0的解集是全體實數(shù),求實數(shù)a的取值范圍.

分析 根據(jù)不等式的解集是全體實數(shù),△<0,由此求出a的取值范圍.

解答 解:不等式-x2-2(a-1)x-1<0可化為:
x2+2(a-1)x+1>0,
因為該不等式的解集是全體實數(shù),
∴△=4(a-1)2-4<0,
解得0<a<2,
即實數(shù)a的取值范圍是(0,2).

點評 本題主要考查一元二次不等式的解法與應(yīng)用問題,也考查了不等式恒成立問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題“?x∈R,x2-2x+2≥0”的否定是( 。
A.?x∈∅,x2-2x+2≥0B.?x∈R,x2-2x+2<0
C.?x0∈R,x02-2x0+2≥0D.?x0∈R,x02-2x0+2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求等差數(shù)列12、8、4、0…的通項公式與該數(shù)列第8項的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面直角坐標(biāo)系xOy中,向量$\overrightarrow{α}$=(2,1),$\overrightarrow{β}$=(3,λ)(λ>0),若(2$\overrightarrow{α}-\overrightarrow{β}$)$⊥\overrightarrow{β}$,記<$\overrightarrow{α},\overrightarrow{β}$>=θ,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=sinnxcosnx的導(dǎo)數(shù)是nsinn-1xcosxcosnx-nsinnxsinnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=Asin(ωx+φ)(ω>0,A>0,φ為銳角),在同一周期內(nèi),當(dāng)x=$\frac{π}{12}$時,取得最大值y=2,當(dāng)x=$\frac{7π}{12}$時,取得最小值y=-2,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=2sin($\frac{1}{2}x+\frac{π}{4}$)的最小正周期是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.現(xiàn)給出下列結(jié)論:
(1)在△ABC中,若sinA>sinB則a>b;
(2)$sin\frac{π}{4}sin(x+\frac{π}{4})$是sinx和cosx的等差中項;
(3)函數(shù)y=sinx+2cosx的值域為[-3,3];
(4)振動方程$y=-2sin(2x+\frac{π}{8})$(x≥0)的初相為$\frac{π}{8}$;
(5)銳角三角形ABC中,可能有cosA+cosB+cosC>sinA+sinB+sinC.
其中正確結(jié)論的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定積分$\int_1^2{\frac{1}{x}}dx$=ln2.

查看答案和解析>>

同步練習(xí)冊答案