19.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為98,則判斷框內(nèi)可填入的條件為( 。
A.n>4?B.n>5?C.n>6?D.n>7?

分析 模擬執(zhí)行程序框圖,依次得到s,n的值,當n=5時,由題意滿足條件,退出循環(huán),輸出s的值為98,從而可得判斷框內(nèi)可填入的條件.

解答 解:模擬執(zhí)行程序框圖,可得:
s=0,n=1
執(zhí)行循環(huán)體,s=2,n=2
不滿足條件,執(zhí)行循環(huán)體,s=10,n=3
不滿足條件,執(zhí)行循環(huán)體,s=34,n=4
不滿足條件,執(zhí)行循環(huán)體,s=98,n=5
此時,由題意,滿足條件,退出循環(huán),輸出s的值為98,
則判斷框內(nèi)可填入的條件為:n>4?
故選:A.

點評 本題考查循環(huán)結(jié)構(gòu)的程序框圖的應用,解答本題的關鍵是根據(jù)框圖得出算法,計算出循環(huán)次數(shù),再由n的變化規(guī)律得出退出循環(huán)的條件,本題是框圖考查常見的形式,較多見,題后作好總結(jié),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則|$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.$\sqrt{2}$B.$\sqrt{10}$C.2D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設函數(shù)f(x)=exsinx,x∈[0,π],則( 。
A.x=$\frac{π}{2}$為f(x)的極小值點B.x=$\frac{π}{2}$為f(x)的極大值點
C.x=$\frac{3π}{4}$為f(x)的極小值點D.x=$\frac{3π}{4}$為f(x)的極大值點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.過拋物線y2=2px(p>0)焦點F的直線與拋物線交于A,B兩點,作AC,BD垂直拋物線的準線l于C,D,其中O為坐標原點,則下列結(jié)論正確的是①②③.(填序號)
①$\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{BD}-\overrightarrow{BA}$;
②存在λ∈R,使得$\overrightarrow{AD}=λ\overrightarrow{AO}$成立;
③$\overrightarrow{FC}•\overrightarrow{FD}$=0;
④準線l上任意一點M,都使得$\overrightarrow{AM}•\overrightarrow{BM}$>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,則|QF|=(  )
A.3B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若輸出的s=86,則判斷框內(nèi)的正整數(shù)n的所有可能的值為( 。
A.7B.6,7C.6,7,8D.8,9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.等差數(shù)列{an}中的a3,a2015是函數(shù)f(x)=x3-9x2+8x-1的極值點,則log${\;}_{\frac{1}{3}}$a1009=( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知動點M到點(8,0)的距離是M到點(2,0)的距離的兩倍,其軌跡與圓x2+y2-8x-8y+16=0相交于A,B兩點,則線段AB的長度是(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{14}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設數(shù)列{an}的各項均為正數(shù),其前n項和Sn滿足Sn=$\frac{1}{6}$(${a_n}^2$+3an-4),則Sn=$\frac{3}{2}$n2+$\frac{5}{2}n$.

查看答案和解析>>

同步練習冊答案