已知函數(shù)f(x)=
2x+3
2x-3
,g(x)與f(x)的圖象關(guān)于直線y=x對(duì)稱,則g(x)=
 
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化指數(shù)式為對(duì)數(shù)式,求出x,然后把x,y互換得到原函數(shù)的反函數(shù).
解答: 解:∵g(x)與f(x)的圖象關(guān)于直線y=x對(duì)稱,
∴g(x)為f(x)的反函數(shù),
y=f(x)=
2x+3
2x-3
,得y•2x-3y=2x+3,即2x=
3(y+1)
y-1
,
x=log2
3(y+1)
y-1
(y≠1).
∴函數(shù)f(x)的反函數(shù)為g(x)=log2
3(x+1)
x-1
,x∈(-∞,-1)∪(1,+∞).
故答案為:log2
3(x+1)
x-1
,x∈(-∞,-1)∪(1,+∞).
點(diǎn)評(píng):本題考查了反函數(shù)的求法,考查了互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽.若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為有界泛函.在函數(shù)f(x)=2x,g(x)=x2,h(x)=2x,v(x)=xsinx中,屬于有界泛函的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求成績落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ) 根據(jù)直方圖估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 若參加考試的學(xué)生共有600人,估計(jì)本次考試70分以上的學(xué)生共有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),在[0,+∞)上為增函數(shù),若f(log2x)>f(1),則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=6,S3=21,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
x2
k-5
+
y2
3-k
=-1
表示橢圓,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x+sinxcosx的最小正周期T=( 。
A、π
B、2π
C、
π
2
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=log2(1-x),u(x)=log2(1+x),f(x)=g(x)-u(x)
(1)判斷并證明f(x)的奇偶性;
(2)若關(guān)于x的方程f(x)=log2(x-k)有實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x-[x],x≤0
f(x-1),x>0
,其中[x]表示不超過x的最大整數(shù),如:[-1.2]=-2,[1.2]=1,[1]=1.則f(3.15)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案