【題目】如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD .
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點(diǎn),求三棱錐A-MBC的體積.
【答案】(1)詳見解析(2)
【解析】試題分析:(Ⅰ)證明:CD⊥平面ABD,只需證明AB⊥CD;(Ⅱ)利用轉(zhuǎn)換底面,VA-MBC=VC-ABM=S△ABMCD,即可求出三棱錐A-MBC的體積
試題解析:(1)∵AB⊥平面BCD,CD平面BCD,
∴AB⊥CD.
又∵CD⊥BD,AB∩BD=B,
AB平面ABD,BD平面ABD,
∴CD⊥平面ABD.
(2)法一:由AB⊥平面BCD,得AB⊥BD,
∵AB=BD=1,∴S△ABD=.
∵M(jìn)是AD的中點(diǎn),
∴S△ABM=S△ABD=
由(1)知,CD⊥平面ABD,
∴三棱錐C-ABM的高h=CD=1,
因此三棱錐A-MBC的體積
VA-MBC=VC-ABM=S△ABM·h=.
法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCD=BD,如圖,過點(diǎn)M作MN⊥BD交BD于點(diǎn)N,則MN⊥平面BCD,且MN=AB=,又CD⊥BD,BD=CD=1,
∴S△BCD=.
∴三棱錐A-MBC的體積
VA-MBC=VA-BCD-VM-BCD
=AB·S△BCD-MN·S△BCD
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
如圖,四邊形是正方形,△與△均是以為直角頂點(diǎn)的等腰直角三角形,點(diǎn)是的中點(diǎn),點(diǎn)是邊上的任意一點(diǎn).
(1)求證: ;
(2)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCDA1B1C1D1中,E,F分別為B1C1,A1D1的中點(diǎn).求證:平面ABB1A1與平面CDFE相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1,A1D1的中點(diǎn).求證:
(1)直線BC1∥平面EFPQ.
(2)直線AC1⊥平面PQMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)),P、Q分別為直線與x軸、y軸的交點(diǎn),線段PQ的中點(diǎn)為M.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo)和直線OM的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.如圖,在三棱錐V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,則下列結(jié)論中不一定成立的是 ( )
A. AC=BC
B. VC⊥VD
C. AB⊥VC
D. S△VCD·AB=S△ABC·VO
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知e為自然對數(shù)的底數(shù),設(shè)函數(shù),則( ).
A. 當(dāng)k=1時(shí),f(x)在x=1處取到極小值 B. 當(dāng)k=1時(shí),f(x)在x=1處取到極大值
C. 當(dāng)k=2時(shí),f(x)在x=1處取到極小值 D. 當(dāng)k=2時(shí),f(x)在x=1處取到極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線C1 (t為參數(shù)),C2 (θ為參數(shù)),
(Ⅰ)當(dāng)α= 時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com