(2008•揚(yáng)州二模)計(jì)算:(-
1
2
+
3
2
i)10-(
1-i
2
)6
=
-
1
2
+
3
-2
2
i
-
1
2
+
3
-2
2
i
分析:(-
1
2
+
3
2
i)3=1
化簡(jiǎn)前一項(xiàng),把后一項(xiàng)平方再立方,通分后答案可求.
解答:解:(-
1
2
+
3
2
i)10-(
1-i
2
)6

=[(-
1
2
+
3
2
i)3]3(-
1
2
+
3
2
i)-[(
1-i
2
)2]3

=-
1
2
+
3
2
i-(-i)3

=-
1
2
+
3
-2
2
i

故答案為-
1
2
+
3
-2
2
i
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了1的立方根,是基礎(chǔ)的計(jì)算題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•揚(yáng)州二模)已知a1=0,an+1=an+(2n-1),則an=
(n-1)2
(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•揚(yáng)州二模)已知二次函數(shù)f(x)=x2-2x+6,設(shè)向量a=(sinx,2),b=(2sinx,
1
2
),c=(cos2x,1),d=(1,2).當(dāng)x∈[0,π]時(shí),不等式f(a•b)>f(c•d)的解集為
π
4
,
4
π
4
,
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•揚(yáng)州二模)如圖,平面內(nèi)有三個(gè)向量
OA
、
OB
、
OC
,其中與
OA
OB
的夾角為120°,
OA
OC
的夾角為30°,且|
OA
|=2,|
OB
|=1,|
OC
|=2
3
,若
OC
OA
OB
(λ,μ∈R),則λ+μ的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•揚(yáng)州二模)設(shè)m為實(shí)數(shù),A={(x,y)|
x-2y+5≥0
3-x≥0
mx+y≥0
}
,B={(x,y)|x2+y2≤25},若A⊆B,則m的取值范圍是
[0,
4
3
]
[0,
4
3
]

查看答案和解析>>

同步練習(xí)冊(cè)答案