【題目】在中,已知,,則為( )
A. 等腰直角三角形 B. 等邊三角形
C. 銳角非等邊三角形 D. 鈍角三角形
【答案】A
【解析】
已知第一個等式利用正弦定理化簡,再利用誘導公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.
將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,
∵sinC=sin(A+B)=sinAcosB+cosAsinB,
∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,
∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,
已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,
﹣ [cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣ cosC,
∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣ cosC,
即(cosC+1)(2﹣cosC)=2﹣cosC,
整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,
∴cosC=0或cosC=2(舍去),
∴C=90°,
則△ABC為等腰直角三角形.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜好體育運動是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運動的人數(shù)為6.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯概率不超過的前提下認為喜好體育運動與性別有關(guān)?說明你的理由.
(參考公式: )
臨界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當x∈[2,3]時,f(x)=x,則當x∈(﹣2,0)時,函數(shù)f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點為極點,x軸正半軸為極軸建立極坐標系,則曲線C的極坐標方程為ρ=4cos θ.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將曲線C上各點的橫坐標縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x﹣ )=f(x+ )恒成立,當x∈[2,3]時,f(x)=x,則當x∈(﹣2,0)時,函數(shù)f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海南大學某餐飲中心為了解新生的飲食習慣,在全校新生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
(Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(Ⅱ)已知在被調(diào)查的北方學生中有5名中文系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:,K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確個數(shù)為( )
(1)若,當時,則在上是單調(diào)遞增函數(shù);
(2)單調(diào)減區(qū)間為;
(3)
-3 | -2 | -1 | 0 | 1 | 2 | 3 | |
4 | 3 | 2 | 1 | -2 | -3 | -4 |
上述表格中的函數(shù)是奇函數(shù);
(4)若是上的偶函數(shù),則都在圖像上.
A.0B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻
率分布直方圖;
統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點
值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com