【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2ccosB=2a+b,若△ABC的面積為S= c,則ab的最小值為 .
【答案】12
【解析】解:在△ABC中,由條件里用正弦定理可得2sinCcosB=2sinA+sinB=2sin(B+C)+sinB, 即 2sinCcosB=2sinBcosC+2sinCcosB+sinB,
∴2sinBcosC+sinB=0,∴cosC=﹣ ,C= .
由于△ABC的面積為S= absinC= ab= c,∴c= ab.
再由余弦定理可得c2=a2+b2﹣2abcosC,整理可得 a2b2=a2+b2+ab≥3ab,
當(dāng)且僅當(dāng)a=b時(shí),取等號(hào),∴ab≥12,
所以答案是:12.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正弦定理:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分別為角A,B,C的對(duì)邊,在四面體PABC中,S1,S2,S3,S分別表示△PAB,△PBC,△PCA,△ABC的面積,α,β,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。寫出對(duì)四面體性質(zhì)的猜想,并證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2ccosB=2a+b,若△ABC的面積為S= c,則ab的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)結(jié)論:
①已知X服從正態(tài)分布N(0,σ2),且P(﹣2≤X≤2)=0.6,則P(X>2)=0.2;
②若命題 ,則¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直線l1:ax+3y﹣1=0,l2:x+by+1=0,則l1⊥l2的充要條件是 .
其中正確的結(jié)論的個(gè)數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式的解集是,求,的值;
(2)設(shè)關(guān)于的不等式的解集是,集合,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半圓:,、分別為半圓與軸的左、右交點(diǎn),直線過(guò)點(diǎn)且與軸垂直,點(diǎn)在直線上,縱坐標(biāo)為,若在半圓上存在點(diǎn)使,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為k(k≠0)的直線 交橢圓 于 兩點(diǎn)。
(1)記直線 的斜率分別為 ,當(dāng) 時(shí),證明:直線 過(guò)定點(diǎn);
(2)若直線 過(guò)點(diǎn) ,設(shè) 與 的面積比為 ,當(dāng) 時(shí),求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程;曲線的極坐標(biāo)方程。
(2)當(dāng)曲線與曲線有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com